1,835 research outputs found

    Multidimensional Range Queries on Modern Hardware

    Full text link
    Range queries over multidimensional data are an important part of database workloads in many applications. Their execution may be accelerated by using multidimensional index structures (MDIS), such as kd-trees or R-trees. As for most index structures, the usefulness of this approach depends on the selectivity of the queries, and common wisdom told that a simple scan beats MDIS for queries accessing more than 15%-20% of a dataset. However, this wisdom is largely based on evaluations that are almost two decades old, performed on data being held on disks, applying IO-optimized data structures, and using single-core systems. The question is whether this rule of thumb still holds when multidimensional range queries (MDRQ) are performed on modern architectures with large main memories holding all data, multi-core CPUs and data-parallel instruction sets. In this paper, we study the question whether and how much modern hardware influences the performance ratio between index structures and scans for MDRQ. To this end, we conservatively adapted three popular MDIS, namely the R*-tree, the kd-tree, and the VA-file, to exploit features of modern servers and compared their performance to different flavors of parallel scans using multiple (synthetic and real-world) analytical workloads over multiple (synthetic and real-world) datasets of varying size, dimensionality, and skew. We find that all approaches benefit considerably from using main memory and parallelization, yet to varying degrees. Our evaluation indicates that, on current machines, scanning should be favored over parallel versions of classical MDIS even for very selective queries

    Diamond Dicing

    Get PDF
    In OLAP, analysts often select an interesting sample of the data. For example, an analyst might focus on products bringing revenues of at least 100 000 dollars, or on shops having sales greater than 400 000 dollars. However, current systems do not allow the application of both of these thresholds simultaneously, selecting products and shops satisfying both thresholds. For such purposes, we introduce the diamond cube operator, filling a gap among existing data warehouse operations. Because of the interaction between dimensions the computation of diamond cubes is challenging. We compare and test various algorithms on large data sets of more than 100 million facts. We find that while it is possible to implement diamonds in SQL, it is inefficient. Indeed, our custom implementation can be a hundred times faster than popular database engines (including a row-store and a column-store).Comment: 29 page

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    An Open Source Based Data Warehouse Architecture to Support Decision Making in the Tourism Sector

    Get PDF
    In this paper an alternative Tourism oriented Data Warehousing architecture is proposed which makes use of the most recent free and open source technologies like Java, Postgresql and XML. Such architecture's aim will be to support the decision making process and giving an integrated view of the whole Tourism reality in an established context (local, regional, national, etc.) without requesting big investments for getting the necessary software.Tourism, Data warehousing architecture
    • 

    corecore