834 research outputs found

    Software-defined networking: guidelines for experimentation and validation in large-scale real world scenarios

    Get PDF
    Part 1: IIVC WorkshopInternational audienceThis article thoroughly details large-scale real world experiments using Software-Defined Networking in the testbed setup. More precisely, it provides a description of the foundation technology behind these experiments, which in turn is focused around OpenFlow and on the OFELIA testbed. In this testbed preliminary experiments were performed in order to tune up settings and procedures, analysing the encountered problems and their respective solutions. A methodology consisting of five large-scale experiments is proposed in order to properly validate and improve the evaluation techniques used in OpenFlow scenarios

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Consistent SDNs through Network State Fuzzing

    No full text
    The conventional wisdom is that a software-defined network (SDN) operates under the premise that the logically centralized control plane has an accurate representation of the actual data plane state. Nevertheless, bugs, misconfigurations, faults or attacks can introduce inconsistencies that undermine correct operation. Previous work in this area, however, lacks a holistic methodology to tackle this problem and thus, addresses only certain parts of the problem. Yet, the consistency of the overall system is only as good as its least consistent part. Motivated by an analogy of network consistency checking with program testing, we propose to add active probe-based network state fuzzing to our consistency check repertoire. Hereby, our system, PAZZ, combines production traffic with active probes to continuously test if the actual forwarding path and decision elements (on the data plane) correspond to the expected ones (on the control plane). Our insight is that active traffic covers the inconsistency cases beyond the ones identified by passive traffic. PAZZ prototype was built and evaluated on topologies of varying scale and complexity. Our results show that PAZZ requires minimal network resources to detect persistent data plane faults through fuzzing and localize them quickly

    Time4: Time for SDN

    Full text link
    With the rise of Software Defined Networks (SDN), there is growing interest in dynamic and centralized traffic engineering, where decisions about forwarding paths are taken dynamically from a network-wide perspective. Frequent path reconfiguration can significantly improve the network performance, but should be handled with care, so as to minimize disruptions that may occur during network updates. In this paper we introduce Time4, an approach that uses accurate time to coordinate network updates. Time4 is a powerful tool in softwarized environments, that can be used for various network update scenarios. Specifically, we characterize a set of update scenarios called flow swaps, for which Time4 is the optimal update approach, yielding less packet loss than existing update approaches. We define the lossless flow allocation problem, and formally show that in environments with frequent path allocation, scenarios that require simultaneous changes at multiple network devices are inevitable. We present the design, implementation, and evaluation of a Time4-enabled OpenFlow prototype. The prototype is publicly available as open source. Our work includes an extension to the OpenFlow protocol that has been adopted by the Open Networking Foundation (ONF), and is now included in OpenFlow 1.5. Our experimental results show the significant advantages of Time4 compared to other network update approaches, and demonstrate an SDN use case that is infeasible without Time4.Comment: This report is an extended version of "Software Defined Networks: It's About Time", which was accepted to IEEE INFOCOM 2016. A preliminary version of this report was published in arXiv in May, 201
    • …
    corecore