239 research outputs found

    Receiver Architectures for MIMO-OFDM Based on a Combined VMP-SP Algorithm

    Get PDF
    Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context, algorithms performing message-passing on a probabilistic graph, such as the sum-product (SP) and variational message passing (VMP) algorithms, have become increasingly popular. In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from the equations of the stationary points of a constrained region-based free energy approximation. When applied to a MIMO-OFDM probabilistic model, we obtain a generic receiver architecture performing iterative channel weight and noise precision estimation, equalization and data decoding. We show that this generic scheme can be particularized to a variety of different receiver structures, ranging from high-performance iterative structures to low complexity receivers. This allows for a flexible design of the signal processing specially tailored for the requirements of each specific application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates the high performance of the proposed algorithms and their superiority to heuristic approaches

    Combined Message Passing Algorithms for Iterative Receiver Design in Wireless Communication Systems

    Get PDF

    Systems with Massive Number of Antennas: Distributed Approaches

    Get PDF
    As 5G is entering maturity, the research interest has shifted towards 6G, and specially the new use cases that the future telecommunication infrastructure needs to support. These new use cases encompass much higher requirements, specifically: higher communication data-rates, larger number of users, higher accuracy in localization, possibility to wirelessly charge devices, among others.The radio access network (RAN) has already gone through an evolution on the path towards 5G. One of the main changes was a large increment of the number of antennas in the base-station. Some of them may even reach 100 elements, in what is commonly referred as Massive MIMO. New proposals for 6G RAN point in the direction of continuing this path of increasing the number of antennas, and locate them throughout a certain area of service. Different technologies have been proposed in this direction, such as: cell-free Massive MIMO, distributed MIMO, and large intelligent surface (LIS). In this thesis we focus on LIS, whose conducted theoretical studies promise the fulfillment of the aforementioned requirements.While the theoretical capabilities of LIS have been conveniently analyzed, little has been done in terms of implementing this type of systems. When the number of antennas grow to hundreds or thousands, there are numerous challenges that need to be solved for a successful implementation. The most critical challenges are the interconnection data-rate and the computational complexity.In the present thesis we introduce the implementation challenges, and show that centralized processing architectures are no longer adequate for this type of systems. We also present different distributed processing architectures and show the benefits of this type of schemes. This work aims at giving a system-design guideline that helps the system designer to make the right decisions when designing these type of systems. For that, we provide algorithms, performance analysis and comparisons, including first order evaluation of the interconnection data-rate, processing latency, memory and energy consumption. These numbers are based on models and available data in the literature. Exact values depend on the selected technology, and will be accurately determined after building and testing these type of systems.The thesis concentrates mostly on the topic of communication, with additional exploration of other areas, such as localization. In case of localization, we benefit from the high spatial resolution of a very-large array that provides very rich channel state information (CSI). A CSI-based fingerprinting via neural network technique is selected for this case with promising results. As the communication and localization services are based on the acquisition of CSI, we foresee a common system architecture capable of supporting both cases. Further work in this direction is recommended, with the possibility of including other applications such as sensing.The obtained results indicate that the implementation of these very-large array systems is feasible, but the challenges are numerous. The proposed solutions provide encouraging results that need to be verified with hardware implementations and real measurements

    A Unified Message-Passing Algorithm for MIMO-SDMA in Software-defined Radio

    Get PDF
    This paper presents a novel software radio implementation for joint channel estimation, data decoding, and noise variance estimation in multiple-input multiple-output (MIMO) space division multiple access (SDMA). In contrast to many other iterative solutions, the proposed receiver is derived within the theoretical framework of a unified message-passing algorithm, combining belief propagation (BP) and the mean field approximation (MF) on the corresponding factor graph. The algorithm minimizes the region-based variational free energy in the system under appropriate conditions and, hence, converges to a fixpoint. As a use-case, we consider the high-rate packet-oriented IEEE 802.11n standard. Our receiver is implemented on a software-defined radio platform dubbed MIMONet, composed of a GNU radio software component and a universal software radio peripheral (USRP). The receiver was evaluated in real indoor environments. The results of our study clearly show that, once synchronization issues are properly addressed, the BP-MF receiver provides a substantial performance improvement compared to a conventional receiver also in real-world settings. Such improvement comes at the expense of an increase in running time that can be as high as 87. Therefore, the trade-off between communication performance and receiver complexity should be carefully evaluated in practical settings

    Advanced Signal Processing for MIMO-OFDM Receivers

    Get PDF

    Estimation of Channel Transfer Function and Carrier Frequency Offset for OFDM Systems with Phase Noise

    Get PDF
    The joint estimation of carrier frequency offset (CFO) and channel transfer function (CTF) for orthogonal frequency-division multiplexing (OFDM) systems with phase noise is discussed in this paper. A CFO estimation algorithm is developed by exploring the time-frequency structure of specially designed training symbols, and it provides a very accurate estimation of the CFO in the presence of both unknown frequency-selective fading and phase noise. Based on the estimated CFO, phase noise and frequency-selective fading are jointly estimated by employing the maximum a posteriori (MAP) criterion. Specifically, the fading channel is estimated in the form of the frequency-domain CTF. The estimation of the CTF eliminates the requirement of a priori knowledge of channel length, and it is simpler compared with the time-domain channel impulse response (CIR) estimation methods used in the literature. Theoretical analysis with the Cramer-Rao lower bound (CRLB) demonstrates that the proposed CFO and CTF estimation algorithms can achieve near-optimum performance
    • …
    corecore