12 research outputs found

    Mobile Oriented Future Internet (MOFI)

    Get PDF
    This Special Issue consists of seven papers that discuss how to enhance mobility management and its associated performance in the mobile-oriented future Internet (MOFI) environment. The first two papers deal with the architectural design and experimentation of mobility management schemes, in which new schemes are proposed and real-world testbed experimentations are performed. The subsequent three papers focus on the use of software-defined networks (SDN) for effective service provisioning in the MOFI environment, together with real-world practices and testbed experimentations. The remaining two papers discuss the network engineering issues in newly emerging mobile networks, such as flying ad-hoc networks (FANET) and connected vehicular networks

    Agile management and interoperability testing of SDN/NFV-enriched 5G core networks

    Get PDF
    In the fifth generation (5G) era, the radio internet protocol capacity is expected to reach 20Gb/s per sector, and ultralarge content traffic will travel across a faster wireless/wireline access network and packet core network. Moreover, the massive and mission-critical Internet of Things is the main differentiator of 5G services. These types of real-time and large-bandwidth-consuming services require a radio latency of less than 1 ms and an end-to-end latency of less than a few milliseconds. By distributing 5G core nodes closer to cell sites, the backhaul traffic volume and latency can be significantly reduced by having mobile devices download content immediately from a closer content server. In this paper, we propose a novel solution based on software-defined network and network function virtualization technologies in order to achieve agile management of 5G core network functionalities with a proof-of-concept implementation targeted for the PyeongChang Winter Olympics and describe the results of interoperability testing experiences between two core networks

    Design and implementation of the OFELIA FP7 facility: The European OpenFlow testbed

    Get PDF
    The growth of the Internet in terms of number of devices, the number of networks associated to each device and the mobility of devices and users makes the operation and management of the Internet network infrastructure a very complex challenge. In order to address this challenge, innovative solutions and ideas must be tested and evaluated in real network environments and not only based on simulations or laboratory setups. OFELIA is an European FP7 project and its main objective is to address the aforementioned challenge by building and operating a multi-layer, multi-technology and geographically distributed Future Internet testbed facility, where the network itself is precisely controlled and programmed by the experimenter using the emerging OpenFlow technology. This paper reports on the work done during the first half of the project, the lessons learned as well as the key advantages of the OFELIA facility for developing and testing new networking ideas. An overview on the challenges that have been faced on the design and implementation of the testbed facility is described, including the OFELIA Control Framework testbed management software. In addition, early operational experience of the facility since it was opened to the general public, providing five different testbeds or islands, is described

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Estudos de aplicabilidade de redes neurais para balanceamento de carga em redes de data centers baseados em OpenFlow

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O crescimento dos serviços de aplicativos em nuvem fornecidos por os data centers com demandas de tráfego variáveis revela limitações dos métodos tradicionais de balanceamento de carga. Visando em atender aos cenários em evolução e melhorar o desempenho geral da rede. Esta pesquisa propõe um estudo de balanceamento de carga baseado em uma Rede Neural Artificial (ANN) no contexto da Rede Definido por Conhecimento (KDN). A KDN busca alavancar as técnicas de Inteligência Artificial (AI) para o controle e operação de redes de computadores. O KDN amplia o Redes Definidas por Software (SDN) com telemetria avançada e análise rede, introduzindo o chamado Plano de Conhecimento. A proposta da ANN é capaz de prever o desempenho da rede de acordo com os parâmetros de tráfego, criando um modelo de comportamento de tráfego baseado em medições de largura de banda e latência sobre diferentes caminhos. O estudo inclui o treinamento do modelo ANN para escolher o roteamento de caminho menos carregado. Realizamos uma série de experimentos em um ambiente emulado para validar o estudo proposto. Os resultados experimentais mostram que o desempenho do data center baseado em KDN foi bastante aprimoradoAbstract: The growth of cloud application services delivered through data centers with varying traffic demands unveils the limitations of traditional load balancing study. Aiming at attending the evolving scenarios and improving the overall network performance. This research proposes a load-balancing study based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters by creating a model of traffic behavior using the available bandwidth and latency measurements over different paths. The study includes training the ANN model to choose the least loaded path routing. We conduct a series of experiments to verify the proposed study. The experimental results show that the performance of the KDN-based data center has been greatly improvedMestradoEngenharia de ComputaçãoMestre em Engenharia Elétrica134031/2015-6CNP

    Optimising Networks For Ultra-High Definition Video

    Get PDF
    The increase in real-time ultra-high definition video services is a challenging issue for current network infrastructures. The high bitrate traffic generated by ultra-high definition content reduces the effectiveness of current live video distribution systems. Transcoders and application layer multicasting (ALM) can reduce traffic in a video delivery system, but they are limited due to the static nature of their implementations. To overcome the restrictions of current static video delivery systems, an OpenFlow based migration system is proposed. This system enables an almost seamless migration of a transcoder or ALM node, while delivering real-time ultra-high definition content. Further to this, a novel heuristic algorithm is presented to optimise control of the migration events and destination. The combination of the migration system and heuristic algorithm provides an improved video delivery system, capable of migrating resources during operation with minimal disruption to clients. With the rise in popularity of consumer based live streaming, it is necessary to develop and improve architectures that can support these new types of applications. Current architectures introduce a large delay to video streams, which presents issues for certain applications. In order to overcome this, an improved infrastructure for delivering real-time streams is also presented. The proposed system uses OpenFlow within a content delivery network (CDN) architecture, in order to improve several aspects of current CDNs. Aside from the reduction in stream delay, other improvements include switch level multicasting to reduce duplicate traffic and smart load balancing for server resources. Furthermore, a novel max-flow algorithm is also presented. This algorithm aims to optimise traffic within a system such as the proposed OpenFlow CDN, with the focus on distributing traffic across the network, in order to reduce the probability of blocking

    A framework for Traffic Engineering in software-defined networks with advance reservation capabilities

    Get PDF
    298 p.En esta tesis doctoral se presenta una arquitectura software para facilitar la introducción de técnicas de ingeniería de tráfico en redes definidas por software. La arquitectura ha sido diseñada de forma modular, de manera que soporte múltiples casos de uso, incluyendo su aplicación en redes académicas. Cabe destacar que las redes académicas se caracterizan por proporcionar servicios de alta disponibilidad, por lo que la utilización de técnicas de ingeniería de tráfico es de vital importancia a fin de garantizar la prestación del servicio en los términos acordados. Uno de los servicios típicamente prestados por las redes académicas es el establecimiento de circuitos extremo a extremo con una duración determinada en la que una serie de recursos de red estén garantizados, conocido como ancho de banda bajo demanda, el cual constituye uno de los casos de uso en ingeniería de tráfico más desafiantes. Como consecuencia, y dado que esta tesis doctoral ha sido co-financiada por la red académica GÉANT, la arquitectura incluye soporte para servicios de reserva avanzada. La solución consiste en una gestión de los recursos de red en función del tiempo, la cual mediante el empleo de estructuras de datos y algoritmos específicamente diseñados persigue la mejora de la utilización de los recursos de red a la hora de prestar este tipo de servicios. La solución ha sido validada teniendo en cuenta los requisitos funcionales y de rendimiento planteados por la red GÉANT. Así mismo, cabe destacar que la solución será utilizada en el despliegue piloto del nuevo servicio de ancho de banda bajo demanda de la red GÉANT a finales del 2017

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Managing Device and Platform Heterogeneity through the Web of Things

    Get PDF
    The chaotic growth of the IoT determined a fragmented landscape with a huge number of devices, technologies, and platforms available on the market, and consequential issues of interoperability on many system deployments. The Web of Things (WoT) architecture recently proposed by the W3C consortium constitutes a novel solution to enable interoperability across IoT Platforms and application domains. At the same time, in order to see an effective improvement, a wide adoption of the W3C WoT solutions from the academic and industrial communities is required; this translates into the need of accurate and complete support tools to ease the deployment of W3C WoT applications, as well as reference guidelines about how to enable the WoT on top of existing IoT scenarios and how to deploy WoT scenarios from scratch. In this thesis, we bring three main contributions for filling such gap: (1) we introduce the WoT Store, a novel platform for managing and easing the deployment of Things and applications on the W3C WoT, and additional strategies for bringing old legacy IoT systems into the WoT. The WoT Store allows the dynamic discovery of the resources available in the environment, i.e. the Things, and to interact with each of them through a dashboard by visualizing their properties, executing commands, or observing the notifications produced. (2) We map three different IoT scenarios to WoT scenarios: a generic heterogeneous environmental monitoring scenario, a structural health monitoring scenario and an Industry4.0 scenario. (3) We make proposals to improve both the W3C standard and the node-wot software stack design: in the first case, new vocabularies are needed in order to handle particular protocols employed in industrial scenarios, while in the second case we present some contributions required for the dynamic instantiation and the migration of Web Things and WoT services in a cloud-to-edge continuum environment
    corecore