5 research outputs found

    OCL Tools Report based on the IDE4OCL Feature Model

    Get PDF
    Previously we have developed the idea of an Integrated Development Environment for OCL (IDE4OCL). Based on the OCL community's feedback we have also designed and published an IDE4OCL feature model. Here we present a report on selected OCL tools developed by the authors and their teams. Each author gives an overview of their OCL tool, provides a top level architecture, and gives an evaluation of the tool features in a web framework. The framework can also be used by other potential OCL users and tool developers. For users it may serve as an aid to choose a suitable tool for their OCL use scenarios. For tool developers it provides a comparative view for further development of the OCL tools. Our plans are to maintain the collected data and extend this web framework by further OCL tools. Additionally, we would like to encourage sharing of OCL development resources

    Verification and Validation of UML/OCL Object Componenets Models

    Get PDF

    On Formalizing UML and OCL Features and Their Employment to Runtime Verification

    Get PDF
    Model-driven development (MDD) has been identified as a promising approach for developing software. By using abstract models of a system and by generating parts of the system out of these models, one tries to improve the efficiency of the overall development process and the quality of the resulting software. In the context of MDD the Unified Modeling Language (UML) and its related textual Object Constraint Language (OCL) have gained a high recognition. To be able to generate systems of high quality and to allow for interoperability between modeling tools, a well-defined semantics for these languages is required. This thesis summarizes published work in this context that employs an endogenous metamodeling approach to define the semantics of newer elements of the UML. While the covered elements are exhaustively used to define relations between elements of the metamodel of the UML, the UML specification leaves out a precise definition of their semantics. Our proposed approach uses models, not only to define the abstract syntax, but also to define the semantics of UML. By using UML and OCL for this, existing modeling tools can be used to validate the definition. The second part of this thesis covers work on the usage of UML and OCL models for runtime verification. It is shown how models can still be used at the end of a software development process, i. e., after an implementation has manually been added to generated parts, even though they are not used as central parts of the development process. This work also influenced the integration of protocol state machines into a modeling tool, which lead to publications about the runtime semantics of state machines and the capabilities to declaratively specify behavior using state machines
    corecore