14 research outputs found

    The Parametrized Complexity of the Segment Number

    Full text link
    Given a straight-line drawing of a graph, a {\em segment} is a maximal set of edges that form a line segment. Given a planar graph GG, the {\em segment number} of GG is the minimum number of segments that can be achieved by any planar straight-line drawing of GG. The {\em line cover number} of GG is the minimum number of lines that support all the edges of a planar straight-line drawing of GG. Computing the segment number or the line cover number of a planar graph is ∃R\exists\mathbb{R}-complete and, thus, NP-hard. We study the problem of computing the segment number from the perspective of parameterized complexity. We show that this problem is fixed-parameter tractable with respect to each of the following parameters: the vertex cover number, the segment number, and the line cover number. We also consider colored versions of the segment and the line cover number.Comment: The conference version of this paper appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Extending Upward Planar Graph Drawings

    Full text link
    In this paper we study the computational complexity of the Upward Planarity Extension problem, which takes in input an upward planar drawing ΓH\Gamma_H of a subgraph HH of a directed graph GG and asks whether ΓH\Gamma_H can be extended to an upward planar drawing of GG. Our study fits into the line of research on the extensibility of partial representations, which has recently become a mainstream in Graph Drawing. We show the following results. First, we prove that the Upward Planarity Extension problem is NP-complete, even if GG has a prescribed upward embedding, the vertex set of HH coincides with the one of GG, and HH contains no edge. Second, we show that the Upward Planarity Extension problem can be solved in O(nlog⁡n)O(n \log n) time if GG is an nn-vertex upward planar stst-graph. This result improves upon a known O(n2)O(n^2)-time algorithm, which however applies to all nn-vertex single-source upward planar graphs. Finally, we show how to solve in polynomial time a surprisingly difficult version of the Upward Planarity Extension problem, in which GG is a directed path or cycle with a prescribed upward embedding, HH contains no edges, and no two vertices share the same yy-coordinate in ΓH\Gamma_H

    Drawing Graphs as Spanners

    Full text link
    We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph GG, the goal is to construct a straight-line drawing Γ\Gamma of GG in the plane such that, for any two vertices uu and vv of GG, the ratio between the minimum length of any path from uu to vv and the Euclidean distance between uu and vv is small. The maximum such ratio, over all pairs of vertices of GG, is the spanning ratio of Γ\Gamma. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio 11, a proper straight-line drawing with spanning ratio 11, and a planar straight-line drawing with spanning ratio 11 are NP-complete, ∃R\exists \mathbb R-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio 11 to spanning ratio 1+Ï”1+\epsilon allows us to draw every graph. Namely, we prove that, for every Ï”>0\epsilon>0, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than 1+Ï”1+\epsilon. Third, our drawings with spanning ratio smaller than 1+Ï”1+\epsilon have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio
    corecore