29 research outputs found

    Design and Evaluation of Packet Classification Systems, Doctoral Dissertation, December 2006

    Get PDF
    Although many algorithms and architectures have been proposed, the design of efficient packet classification systems remains a challenging problem. The diversity of filter specifications, the scale of filter sets, and the throughput requirements of high speed networks all contribute to the difficulty. We need to review the algorithms from a high-level point-of-view in order to advance the study. This level of understanding can lead to significant performance improvements. In this dissertation, we evaluate several existing algorithms and present several new algorithms as well. The previous evaluation results for existing algorithms are not convincing because they have not been done in a consistent way. To resolve this issue, an objective evaluation platform needs to be developed. We implement and evaluate several representative algorithms with uniform criteria. The source code and the evaluation results are both published on a web-site to provide the research community a benchmark for impartial and thorough algorithm evaluations. We propose several new algorithms to deal with the different variations of the packet classification problem. They are: (1) the Shape Shifting Trie algorithm for longest prefix matching, used in IP lookups or as a building block for general packet classification algorithms; (2) the Fast Hash Table lookup algorithm used for exact flow match; (3) the longest prefix matching algorithm using hash tables and tries, used in IP lookups or packet classification algorithms;(4) the 2D coarse-grained tuple-space search algorithm with controlled filter expansion, used for two-dimensional packet classification or as a building block for general packet classification algorithms; (5) the Adaptive Binary Cutting algorithm used for general multi-dimensional packet classification. In addition to the algorithmic solutions, we also consider the TCAM hardware solution. In particular, we address the TCAM filter update problem for general packet classification and provide an efficient algorithm. Building upon the previous work, these algorithms significantly improve the performance of packet classification systems and set a solid foundation for further study

    Annales Mathematicae et Informaticae (44.)

    Get PDF

    Preinteraction expectancy effects and stereotypes: Impacts in a clinical context

    Get PDF

    Context-Aware Sensor Fusion For Securing Cyber-Physical Systems

    Get PDF
    The goal of this dissertation is to provide detection and estimation techniques in order to ensure the safety and security of modern Cyber-Physical Systems (CPS) even in the presence of arbitrary sensors faults and attacks. We leverage the fact that modern CPS are equipped with various sensors that provide redundant information about the system\u27s state. In such a setting, the system can limit its dependence on any individual sensor, thereby providing guarantees about its safety even in the presence of arbitrary faults and attacks. In order to address the problem of safety detection, we develop sensor fusion techniques that make use of the sensor redundancy available in modern CPS. First of all, we develop a multidimensional sensor fusion algorithm that outputs a bounded fusion set which is guaranteed to contain the true state even in the presence of attacks and faults. Furthermore, we provide two approaches for strengthening sensor fusion\u27s worst-case guarantees: 1) incorporating historical measurements as well as 2) analyzing sensor transmission schedules (e.g., in a time-triggered system using a shared bus) in order to minimize the attacker\u27s available information and impact on the system. In addition, we modify the sensor fusion algorithm in order to provide guarantees even when sensors might experience transient faults in addition to attacks. Finally, we develop an attack detection technique (also in the presence of transient faults) in order to discard attacked sensors. In addition to standard plant sensors, we note that modern CPS also have access to multiple environment sensors that provide information about the system\u27s context (e.g., a camera recognizing a nearby building). Since these context measurements are related to the system\u27s state, they can be used for estimation and detection purposes, similar to standard measurements. In this dissertation, we first develop a nominal context-aware filter (i.e., with no faults or attacks) for binary context measurements (e.g., a building detection). Finally, we develop a technique for incorporating context measurements into sensor fusion, thus providing guarantees about system safety even in cases where more than half of standard sensors might be under attack

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.

    Annales Mathematicae et Informaticae 2015

    Get PDF

    Estimating Dependency, Monitoring and Knowledge Discovery in High-Dimensional Data Streams

    Get PDF
    Data Mining – known as the process of extracting knowledge from massive data sets – leads to phenomenal impacts on our society, and now affects nearly every aspect of our lives: from the layout in our local grocery store, to the ads and product recommendations we receive, the availability of treatments for common diseases, the prevention of crime, or the efficiency of industrial production processes. However, Data Mining remains difficult when (1) data is high-dimensional, i.e., has many attributes, and when (2) data comes as a stream. Extracting knowledge from high-dimensional data streams is impractical because one must cope with two orthogonal sets of challenges. On the one hand, the effects of the so-called "curse of dimensionality" bog down the performance of statistical methods and yield to increasingly complex Data Mining problems. On the other hand, the statistical properties of data streams may evolve in unexpected ways, a phenomenon known in the community as "concept drift". Thus, one needs to update their knowledge about data over time, i.e., to monitor the stream. While previous work addresses high-dimensional data sets and data streams to some extent, the intersection of both has received much less attention. Nevertheless, extracting knowledge in this setting is advantageous for many industrial applications: identifying patterns from high-dimensional data streams in real-time may lead to larger production volumes, or reduce operational costs. The goal of this dissertation is to bridge this gap. We first focus on dependency estimation, a fundamental task of Data Mining. Typically, one estimates dependency by quantifying the strength of statistical relationships. We identify the requirements for dependency estimation in high-dimensional data streams and propose a new estimation framework, Monte Carlo Dependency Estimation (MCDE), that fulfils them all. We show that MCDE leads to efficient dependency monitoring. Then, we generalise the task of monitoring by introducing the Scaling Multi-Armed Bandit (S-MAB) algorithms, extending the Multi-Armed Bandit (MAB) model. We show that our algorithms can efficiently monitor statistics by leveraging user-specific criteria. Finally, we describe applications of our contributions to Knowledge Discovery. We propose an algorithm, Streaming Greedy Maximum Random Deviation (SGMRD), which exploits our new methods to extract patterns, e.g., outliers, in high-dimensional data streams. Also, we present a new approach, that we name kj-Nearest Neighbours (kj-NN), to detect outlying documents within massive text corpora. We support our algorithmic contributions with theoretical guarantees, as well as extensive experiments against both synthetic and real-world data. We demonstrate the benefits of our methods against real-world use cases. Overall, this dissertation establishes fundamental tools for Knowledge Discovery in high-dimensional data streams, which help with many applications in the industry, e.g., anomaly detection, or predictive maintenance. To facilitate the application of our results and future research, we publicly release our implementations, experiments, and benchmark data via open-source platforms

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore