414 research outputs found

    Reconstruction algorithms for multispectral diffraction imaging

    Full text link
    Thesis (Ph.D.)--Boston UniversityIn conventional Computed Tomography (CT) systems, a single X-ray source spectrum is used to radiate an object and the total transmitted intensity is measured to construct the spatial linear attenuation coefficient (LAC) distribution. Such scalar information is adequate for visualization of interior physical structures, but additional dimensions would be useful to characterize the nature of the structures. By imaging using broadband radiation and collecting energy-sensitive measurement information, one can generate images of additional energy-dependent properties that can be used to characterize the nature of specific areas in the object of interest. In this thesis, we explore novel imaging modalities that use broadband sources and energy-sensitive detection to generate images of energy-dependent properties of a region, with the objective of providing high quality information for material component identification. We explore two classes of imaging problems: 1) excitation using broad spectrum sub-millimeter radiation in the Terahertz regime and measure- ment of the diffracted Terahertz (THz) field to construct the spatial distribution of complex refractive index at multiple frequencies; 2) excitation using broad spectrum X-ray sources and measurement of coherent scatter radiation to image the spatial distribution of coherent-scatter form factors. For these modalities, we extend approaches developed for multimodal imaging and propose new reconstruction algorithms that impose regularization structure such as common object boundaries across reconstructed regions at different frequencies. We also explore reconstruction techniques that incorporate prior knowledge in the form of spectral parametrization, sparse representations over redundant dictionaries and explore the advantage and disadvantages of these techniques in terms of image quality and potential for accurate material characterization. We use the proposed reconstruction techniques to explore alternative architectures with reduced scanning time and increased signal-to-noise ratio, including THz diffraction tomography, limited angle X-ray diffraction tomography and the use of coded aperture masks. Numerical experiments and Monte Carlo simulations were conducted to compare performances of the developed methods, and validate the studied architectures as viable options for imaging of energy-dependent properties

    Development and Implementation of Fully 3D Statistical Image Reconstruction Algorithms for Helical CT and Half-Ring PET Insert System

    Get PDF
    X-ray computed tomography: CT) and positron emission tomography: PET) have become widely used imaging modalities for screening, diagnosis, and image-guided treatment planning. Along with the increased clinical use are increased demands for high image quality with reduced ionizing radiation dose to the patient. Despite their significantly high computational cost, statistical iterative reconstruction algorithms are known to reconstruct high-quality images from noisy tomographic datasets. The overall goal of this work is to design statistical reconstruction software for clinical x-ray CT scanners, and for a novel PET system that utilizes high-resolution detectors within the field of view of a whole-body PET scanner. The complex choices involved in the development and implementation of image reconstruction algorithms are fundamentally linked to the ways in which the data is acquired, and they require detailed knowledge of the various sources of signal degradation. Both of the imaging modalities investigated in this work have their own set of challenges. However, by utilizing an underlying statistical model for the measured data, we are able to use a common framework for this class of tomographic problems. We first present the details of a new fully 3D regularized statistical reconstruction algorithm for multislice helical CT. To reduce the computation time, the algorithm was carefully parallelized by identifying and taking advantage of the specific symmetry found in helical CT. Some basic image quality measures were evaluated using measured phantom and clinical datasets, and they indicate that our algorithm achieves comparable or superior performance over the fast analytical methods considered in this work. Next, we present our fully 3D reconstruction efforts for a high-resolution half-ring PET insert. We found that this unusual geometry requires extensive redevelopment of existing reconstruction methods in PET. We redesigned the major components of the data modeling process and incorporated them into our reconstruction algorithms. The algorithms were tested using simulated Monte Carlo data and phantom data acquired by a PET insert prototype system. Overall, we have developed new, computationally efficient methods to perform fully 3D statistical reconstructions on clinically-sized datasets

    High Performance Reconstruction Framework for Straight Ray Tomography:from Micro to Nano Resolution Imaging

    Get PDF
    We develop a high-performance scheme to reconstruct straight-ray tomographic scans. We preserve the quality of the state-of-the-art schemes typically found in traditional computed tomography but reduce the computational cost substantially. Our approach is based on 1) a rigorous discretization of the forward model using a generalized sampling scheme; 2) a variational formulation of the reconstruction problem; and 3) iterative reconstruction algorithms that use the alternating-direction method of multipliers. To improve the quality of the reconstruction, we take advantage of total-variation regularization and its higher-order variants. In addition, the prior information on the support and the positivity of the refractive index are both considered, which yields significant improvements. The two challenging applications to which we apply the methods of our framework are grating-based \mbox{x-ray} imaging (GI) and single-particle analysis (SPA). In the context of micro-resolution GI, three complementary characteristics are measured: the conventional absorption contrast, the differential phase contrast, and the small-angle scattering contrast. While these three measurements provide powerful insights on biological samples, up to now they were calling for a large-dose deposition which potentially was harming the specimens ({\textit{e.g.}}, in small-rodent scanners). As it turns out, we are able to preserve the image quality of filtered back-projection-type methods despite the fewer acquisition angles and the lower signal-to-noise ratio implied by a reduction in the total dose of {\textit{in-vivo}} grating interferometry. To achieve this, we first apply our reconstruction framework to differential phase-contrast imaging (DPCI). We then add Jacobian-type regularization to simultaneously reconstruct phase and absorption. The experimental results confirm the power of our method. This is a crucial step toward the deployment of DPCI in medicine and biology. Our algorithms have been implemented in the TOMCAT laboratory of the Paul Scherrer Institute. In the context of near-atomic-resolution SPA, we need to cope with hundreds or thousands of noisy projections of macromolecules onto different micrographs. Moreover, each projection has an unknown orientation and is blurred by some space-dependent point-spread function of the microscope. Consequently, the determination of the structure of a macromolecule involves not only a reconstruction task, but also the deconvolution of each projection image. We formulate this problem as a constrained regularized reconstruction. We are able to directly include the contrast transfer function in the system matrix without any extra computational cost. The experimental results suggest that our approach brings a significant improvement in the quality of the reconstruction. Our framework also provides an important step toward the application of SPA for the {\textit{de novo}} generation of macromolecular models. The corresponding algorithms have been implemented in Xmipp

    Master of Science

    Get PDF
    thesisThis thesis deals with the procedures and considerations of High Resolution X-ray Micro Tomography (HRXMT) to describe the internal structure and composition of multiphase mineral particles using XRadia's Micro XCT 400. Issues such as sampling statistics, sample preparation, scan conditions adjustment, image evaluation, and data analysis are considered. Mineral characterization using Computed Tomography (CT) standards is also discussed with the procedure of making a CT standard and comparison of HRXMT results and automated analysis of polished sections (QEMSCAN) results. In order to record and establish scan conditions, a database is provided. The use of XMuDat is discussed step by step for the user to easily evaluate the mass attenuation coefficient relationship of a mineral sample. The operating procedures of the XRadia Micro XCT 400 system are also set for a new user to be able to understand and operate the system for a sample scan. Several applications using HRXMT are also discussed. First, a few oil shale samples have been investigated to acquire high resolution internal structure images. Second, the methodology for rapid radiographic scans to identify heavy metal mineral rich regions in low grade ores is developed as an initial attempt to effectively link mine to mill. Finally, scans and analysis of teeth are presented to define internal structures in three dimensional images using CT Standards

    Algorithms for enhanced artifact reduction and material recognition in computed tomography

    Full text link
    Computed tomography (CT) imaging provides a non-destructive means to examine the interior of an object which is a valuable tool in medical and security applications. The variety of materials seen in the security applications is higher than in the medical applications. Factors such as clutter, presence of dense objects, and closely placed items in a bag or a parcel add to the difficulty of the material recognition in security applications. Metal and dense objects create image artifacts which degrade the image quality and deteriorate the recognition accuracy. Conventional CT machines scan the object using single source or dual source spectra and reconstruct the effective linear attenuation coefficient of voxels in the image which may not provide the sufficient information to identify the occupying materials. In this dissertation, we provide algorithmic solutions to enhance CT material recognition. We provide a set of algorithms to accommodate different classes of CT machines. First, we provide a metal artifact reduction algorithm for conventional CT machines which perform the measurements using single X-ray source spectrum. Compared to previous methods, our algorithm is robust to severe metal artifacts and accurately reconstructs the regions that are in proximity to metal. Second, we propose a novel joint segmentation and classification algorithm for dual-energy CT machines which extends prior work to capture spatial correlation in material X-ray attenuation properties. We show that the classification performance of our method surpasses the prior work's result. Third, we propose a new framework for reconstruction and classification using a new class of CT machines known as spectral CT which has been recently developed. Spectral CT uses multiple energy windows to scan the object, thus it captures data across higher energy dimensions per detector. Our reconstruction algorithm extracts essential features from the measured data by using spectral decomposition. We explore the effect of using different transforms in performing the measurement decomposition and we develop a new basis transform which encapsulates the sufficient information of the data and provides high classification accuracy. Furthermore, we extend our framework to perform the task of explosive detection. We show that our framework achieves high detection accuracy and it is robust to noise and variations. Lastly, we propose a combined algorithm for spectral CT, which jointly reconstructs images and labels each region in the image. We offer a tractable optimization method to solve the proposed discrete tomography problem. We show that our method outperforms the prior work in terms of both reconstruction quality and classification accuracy
    • …
    corecore