4,202 research outputs found

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    On the Minimax Capacity Loss under Sub-Nyquist Universal Sampling

    Full text link
    This paper investigates the information rate loss in analog channels when the sampler is designed to operate independent of the instantaneous channel occupancy. Specifically, a multiband linear time-invariant Gaussian channel under universal sub-Nyquist sampling is considered. The entire channel bandwidth is divided into nn subbands of equal bandwidth. At each time only kk constant-gain subbands are active, where the instantaneous subband occupancy is not known at the receiver and the sampler. We study the information loss through a capacity loss metric, that is, the capacity gap caused by the lack of instantaneous subband occupancy information. We characterize the minimax capacity loss for the entire sub-Nyquist rate regime, provided that the number nn of subbands and the SNR are both large. The minimax limits depend almost solely on the band sparsity factor and the undersampling factor, modulo some residual terms that vanish as nn and SNR grow. Our results highlight the power of randomized sampling methods (i.e. the samplers that consist of random periodic modulation and low-pass filters), which are able to approach the minimax capacity loss with exponentially high probability.Comment: accepted to IEEE Transactions on Information Theory. It has been presented in part at the IEEE International Symposium on Information Theory (ISIT) 201

    Conductance Fluctuations in a Metallic Wire Interrupted by a Tunnel Junction

    Full text link
    The conductance fluctuations of a metallic wire which is interrupted by a small tunnel junction has been explored experimentally. In this system, the bias voltage V, which drops almost completely inside the tunnel barrier, is used to probe the energy dependence of conductance fluctuations due to disorder in the wire. We find that the variance of the fluctuations is directly proportional to V. The experimental data are consistently described by a theoretical model with two phenomenological parameters: the phase breaking time at low temperatures and the diffusion coefficient.Comment: 9 pages RevTeX and 4 PS figures (accepted for publication in Physical Review Letters

    Asynchronous CDMA Systems with Random Spreading-Part I: Fundamental Limits

    Full text link
    Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanly's concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided
    corecore