2,919 research outputs found

    Living with inconsistencies in a multidatabase system

    Get PDF
    Integration of autonomous sources of information is one of the most important problems in implementation of the global information systems. This paper considers multidatabase systems as one of the typical architectures of global information services and addresses a problem of storing and processing inconsistent information in such systems. A new data model proposed in the paper separates sure from inconsistent information and introduces a system of elementary operations on the containers with sure and inconsistent information. A review of the implementation aspects in an environment of a typical relational database management system concludes the paper

    Aggregate assembly process planning for concurrent engineering

    Get PDF
    In today's consumer and economic climate, manufacturers are finding it increasingly difficult to produce finished products with increased functionality whilst fulfilling the aesthetic requirements of the consumer. To remain competitive, manufacturers must always look for ways to meet the faster, better, and cheaper mantra of today's economy. The ability for any industry to mirror the ideal world, where the design, manufacturing, and assembly process of a product would be perfected before it is put mto production, will undoubtedly save a great deal of time and money. This thesis introduces the concept of aggregate assembly process planning for the conceptual stages of design, with the aim of providing the methodology behind such an environment. The methodology is based on an aggregate product model and a connectivity model. Together, they encompass all the requirements needed to fully describe a product in terms of its assembly processes, providing a suitable means for generating assembly sequences. Two general-purpose heuristics methods namely, simulated annealing and genetic algorithms are used for the optimisation of assembly sequences generated, and the loading of the optimal assembly sequences on to workstations, generating an optimal assembly process plan for any given product. The main novelty of this work is in the mapping of the optimisation methods to the issue of assembly sequence generation and line balancing. This includes the formulation of the objective functions for optimismg assembly sequences and resource loading. Also novel to this work is the derivation of standard part assembly methodologies, used to establish and estimate functional tunes for standard assembly operations. The method is demonstrated using CAPABLEAssembly; a suite of interlinked modules that generates a pool of optimised assembly process plans using the concepts above. A total of nine industrial products have been modelled, four of which are the conceptual product models. The process plans generated to date have been tested on industrial assembly lines and in some cases yield an increase in the production rate

    An energy-conserving contact theory for discrete element modelling of arbitrarily shaped particles: Contact volume based model and computational issues

    Get PDF
    The contact volume based energy-conserving contact model is presented in the current paper as a specialised version of the general energy-conserving contact model established in the first paper of this series (Feng, 2020). It is based on the assumption that the contact energy potential is taken to be a function of the contact volume between two contacting bodies with arbitrary (convex and concave) shapes in both 2D and 3D cases. By choosing such a contact energy function, the full normal contact features can be determined without the need to introduce any additional assumptions/parameters. By further exploiting the geometric properties of the contact surfaces concerned, more effective integration schemes are developed to reduce the evaluation costs involved. When a linear contact energy function of the contact volume is adopted, a linear contact model is derived in which only the intersection between two contact shapes is needed, thereby substantially improving both efficiency and applicability of the proposed contact model. A comparison of this linear energy-conserving contact model with some existing models for discs and spheres further reveals the nature of the proposed model, and provides insights into how to appropriately choose the stiffness parameter included in the energy function. For general non-spherical shapes, mesh representations are required. The corresponding computational aspects are described when shapes are discretised into volumetric meshes, while new developments are presented and recommended for shapes that are represented by surface triangular meshes. Owing to its additive property of the contact geometric features involved, the proposed contact model can be conducted locally in parallel using GPU or GPGPU computing without occurring much communication overhead for shapes represented as either a volumetric or surface triangular mesh. A set of examples considering the elastic impact of two shapes are presented to verify the energy-conserving property of the proposed model for a wide range of concave shapes and contact scenarios, followed by examples involving large numbers of arbitrarily shaped particles to demonstrate the robustness and applicability for more complex and realistic problems

    New Methods, Current Trends and Software Infrastructure for NLP

    Full text link
    The increasing use of `new methods' in NLP, which the NeMLaP conference series exemplifies, occurs in the context of a wider shift in the nature and concerns of the discipline. This paper begins with a short review of this context and significant trends in the field. The review motivates and leads to a set of requirements for support software of general utility for NLP research and development workers. A freely-available system designed to meet these requirements is described (called GATE - a General Architecture for Text Engineering). Information Extraction (IE), in the sense defined by the Message Understanding Conferences (ARPA \cite{Arp95}), is an NLP application in which many of the new methods have found a home (Hobbs \cite{Hob93}; Jacobs ed. \cite{Jac92}). An IE system based on GATE is also available for research purposes, and this is described. Lastly we review related work.Comment: 12 pages, LaTeX, uses nemlap.sty (included

    Visualization of large amounts of multidimensional multivariate business-oriented data

    Get PDF
    Many large businesses store large amounts of business-oriented data in data warehouses. These data warehouses contain fact tables, which themselves contain rows representing business events, such as an individual sale or delivery. This data contains multiple dimensions (independent variables that are categorical) and very often also contains multiple measures (dépendent variables that are usually continuous), which makes it complex for casual business users to analyze and visualize. We propose two techniques, GPLOM and VisReduce, that respectively handle the visualization front-end of complex datasets and the back-end processing necessary to visualize large datasets. Scatterplot matrices (SPLOMs), parallel coordinates, and glyphs can all be used to visualize the multiple measures in multidimensional multivariate data. However, these techniques are not well suited to visualizing many dimensions. To visualize multiple dimensions, “hierarchical axes” that “stack dimensions” have been used in systems like Polaris and Tableau. However, this approach does not scale well beyond a small number of dimensions. Emerson et al. (2013) extend the matrix paradigm of the SPLOM to simultaneously visualize several categorical and continuous variables, displaying many kinds of charts in the matrix depending on the kinds of variables involved. We propose a variant of their technique, called the Generalized Plot Matrix (GPLOM). The GPLOM restricts Emerson et al. (2013)’s technique to only three kinds of charts (scatterplots for pairs of continuous variables, heatmaps for pairs of categorical variables, and barcharts for pairings of categorical and continuous variable), in an effort to make it easier to understand by casual business users. At the same time, the GPLOM extends Emerson et al. (2013)’s work by demonstrating interactive techniques suited to the matrix of charts. We discuss the visual design and interactive features of our GPLOM prototype, including a textual search feature allowing users to quickly locate values or variables by name. We also present a user study that compared performance with Tableau and our GPLOM prototype, that found that GPLOM is significantly faster in certain cases, and not significantly slower in other cases. Also, performance and responsiveness of visual analytics systems for exploratory data analysis of large datasets has been a long standing problem, which GPLOM also encounters. We propose a method called VisReduce that incrementally computes visualizations in a distributed fashion by combining a modified MapReduce-style algorithm with a compressed columnar data store, resulting in significant improvements in performance and responsiveness for constructing commonly encountered information visualizations, e.g., bar charts, scatterplots, heat maps, cartograms and parallel coordinate plots. We compare our method with one that queries three other readily available database and data warehouse systems — PostgreSQL, Cloudera Impala and the MapReduce-based Apache Hive — in order to build visualizations. We show that VisReduce’s end-to-end approach allows for greater speed and guaranteed end-user responsiveness, even in the face of large, long-running queries

    Reviews

    Get PDF
    Researching into Teaching Methods in Colleges and Universities by Clinton Bennett, Lorraine Foreman‐Peck and Chris Higgins, London: Kogan Page, 1996. ISBN: 0–7494–1768–4, 136 (+ vii) pages, paperback. £14.99
    corecore