8,868 research outputs found

    Optimal Taylor-Couette flow: Radius ratio dependence

    Full text link
    Taylor-Couette flow with independently rotating inner (i) and outer (o) cylinders is explored numerically and experimentally to determine the effects of the radius ratio {\eta} on the system response. Numerical simulations reach Reynolds numbers of up to Re_i=9.5 x 10^3 and Re_o=5x10^3, corresponding to Taylor numbers of up to Ta=10^8 for four different radius ratios {\eta}=r_i/r_o between 0.5 and 0.909. The experiments, performed in the Twente Turbulent Taylor-Couette (T^3C) setup, reach Reynolds numbers of up to Re_i=2x10^6$ and Re_o=1.5x10^6, corresponding to Ta=5x10^{12} for {\eta}=0.714-0.909. Effective scaling laws for the torque J^{\omega}(Ta) are found, which for sufficiently large driving Ta are independent of the radius ratio {\eta}. As previously reported for {\eta}=0.714, optimum transport at a non-zero Rossby number Ro=r_i|{\omega}_i-{\omega}_o|/[2(r_o-r_i){\omega}_o] is found in both experiments and numerics. Ro_opt is found to depend on the radius ratio and the driving of the system. At a driving in the range between {Ta\sim3\cdot10^8} and {Ta\sim10^{10}}, Ro_opt saturates to an asymptotic {\eta}-dependent value. Theoretical predictions for the asymptotic value of Ro_{opt} are compared to the experimental results, and found to differ notably. Furthermore, the local angular velocity profiles from experiments and numerics are compared, and a link between a flat bulk profile and optimum transport for all radius ratios is reported.Comment: Submitted to JFM, 28 pages, 17 figure

    Tailoring Anderson localization by disorder correlations in 1D speckle potentials

    Full text link
    We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases

    Inductive Reasoning Games as Influenza Vaccination Models: Mean Field Analysis

    Full text link
    We define and analyze an inductive reasoning game of voluntary yearly vaccination in order to establish whether or not a population of individuals acting in their own self-interest would be able to prevent influenza epidemics. We find that epidemics are rarely prevented. We also find that severe epidemics may occur without the introduction of pandemic strains. We further address the situation where market incentives are introduced to help ameliorating epidemics. Surprisingly, we find that vaccinating families exacerbates epidemics. However, a public health program requesting prepayment of vaccinations may significantly ameliorate influenza epidemics.Comment: 20 pages, 7 figure

    Spin-orbit coupling and anisotropic exchange in two-electron double quantum dots

    Get PDF
    The influence of the spin-orbit interactions on the energy spectrum of two-electron laterally coupled quantum dots is investigated. The effective Hamiltonian for a spin qubit pair proposed in F. Baruffa et al., Phys. Rev. Lett. 104, 126401 (2010) is confronted with exact numerical results in single and double quantum dots in zero and finite magnetic field. The anisotropic exchange Hamiltonian is found quantitatively reliable in double dots in general. There are two findings of particular practical importance: i) The model stays valid even for maximal possible interdot coupling (a single dot), due to the absence of a coupling to the nearest excited level, a fact following from the dot symmetry. ii) In a weak coupling regime, the Heitler-London approximation gives quantitatively correct anisotropic exchange parameters even in a finite magnetic field, although this method is known to fail for the isotropic exchange. The small discrepancy between the analytical model (which employes the linear Dresselhaus and Bychkov-Rashba spin-orbit terms) and the numerical data for GaAs quantum dots is found to be mostly due to the cubic Dresselhaus term.Comment: 15 pages, 11 figure

    A Lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions

    Full text link
    Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d) phase into another co-flowing continuous (c) immiscible phase. Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) to droplet formation downstream of the cross-junction (DC) (Liu &\& Zhang, Phys. Fluids.{\it Phys. ~Fluids.} 23{\bf 23}, 082101 (2011)). We will analyze cases with Droplet Viscoelasticity{\it Droplet ~Viscoelasticity} (DV), where viscoelastic properties are confined in the dispersed phase, as well as cases with Matrix Viscoelasticity{\it Matrix ~Viscoelasticity} (MV), where viscoelastic properties are confined in the continuous phase. Moderate flow-rate ratios Q≈O(1)Q \approx {\cal O}(1) of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, where viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel. Quantitative predictions on the break-up point of the threads are provided as a function of the Deborah number, i.e. the dimensionless number measuring the importance of viscoelasticity with respect to Capillary forces.Comment: 15 pages, 14 figures. This Work applies the Numerical Methodology described in arXiv:1406.2686 to the Problem of Droplet Generation in Microfluidic Cross Junctions. arXiv admin note: substantial text overlap with arXiv:1508.0014

    Dynamics of elastocapillary rise

    Full text link
    We present the results of a combined experimental and theoretical investigation of the surface-tension-driven coalescence of flexible structures. Specifically, we consider the dynamics of the rise of a wetting liquid between flexible sheets that are clamped at their upper ends. As the elasticity of the sheets is progressively increased, we observe a systematic deviation from the classical diffusive-like behaviour: the time to reach equilibrium increases dramatically and the departure from classical rise occurs sooner, trends that we elucidate via scaling analyses. Three distinct temporal regimes are identified and subsequently explored by developing a theoretical model based on lubrication theory and the linear theory of plates. The resulting free-boundary problem is solved numerically and good agreement is obtained with experiments

    Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid

    Get PDF
    In this paper we examine some general features of the time-dependent dynamics of drop deformation and breakup at low Reynolds numbers. The first aspect of our study is a detailed numerical investigation of the ‘end-pinching’ behaviour reported in a previous experimental study. The numerics illustrate the effects of viscosity ratio and initial drop shape on the relaxation and/or breakup of highly elongated droplets in an otherwise quiescent fluid. In addition, the numerical procedure is used to study the simultaneous development of capillary-wave instabilities at the fluid-fluid interface of a very long, cylindrically shaped droplet with bulbous ends. Initially small disturbances evolve to finite amplitude and produce very regular drop breakup. The formation of satellite droplets, a nonlinear phenomenon, is also observed

    Experimental evidence for three universality classes for reaction fronts in disordered flows

    Full text link
    Self-sustained reaction fronts in a disordered medium subject to an external flow display self-affine roughening, pinning and depinning transitions. We measure spatial and temporal fluctuations of the front in 1+11+1 dimensions, controlled by a single parameter, the mean flow velocity. Three distinct universality classes are observed, consistent with the Kardar-Parisi-Zhang (KPZ) class for fast advancing or receding fronts, the quenched KPZ class (positive-qKPZ) when the mean flow approximately cancels the reaction rate, and the negative-qKPZ class for slowly receding fronts. Both quenched KPZ classes exhibit distinct depinning transitions, in agreement with the theory
    • 

    corecore