1,719 research outputs found

    On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain

    Full text link
    The continuous and discrete symmetries of the Kuramoto-Sivashinsky system restricted to a spatially periodic domain play a prominent role in shaping the invariant sets of its chaotic dynamics. The continuous spatial translation symmetry leads to relative equilibrium (traveling wave) and relative periodic orbit (modulated traveling wave) solutions. The discrete symmetries lead to existence of equilibrium and periodic orbit solutions, induce decomposition of state space into invariant subspaces, and enforce certain structurally stable heteroclinic connections between equilibria. We show, on the example of a particular small-cell Kuramoto-Sivashinsky system, how the geometry of its dynamical state space is organized by a rigid `cage' built by heteroclinic connections between equilibria, and demonstrate the preponderance of unstable relative periodic orbits and their likely role as the skeleton underpinning spatiotemporal turbulence in systems with continuous symmetries. We also offer novel visualizations of the high-dimensional Kuramoto-Sivashinsky state space flow through projections onto low-dimensional, PDE representation independent, dynamically invariant intrinsic coordinate frames, as well as in terms of the physical, symmetry invariant energy transfer rates.Comment: 31 pages, 17 figures; added references, corrected typos. Due to file size restrictions some figures in this preprint are of low quality. A high quality copy may be obtained from http://www.cns.gatech.edu/~predrag/papers/preprints.html#rp

    Early-Warning Signs for Pattern-Formation in Stochastic Partial Differential Equations

    Full text link
    There have been significant recent advances in our understanding of the potential use and limitations of early-warning signs for predicting drastic changes, so called critical transitions or tipping points, in dynamical systems. A focus of mathematical modeling and analysis has been on stochastic ordinary differential equations, where generic statistical early-warning signs can be identified near bifurcation-induced tipping points. In this paper, we outline some basic steps to extend this theory to stochastic partial differential equations with a focus on analytically characterizing basic scaling laws for linear SPDEs and comparing the results to numerical simulations of fully nonlinear problems. In particular, we study stochastic versions of the Swift-Hohenberg and Ginzburg-Landau equations. We derive a scaling law of the covariance operator in a regime where linearization is expected to be a good approximation for the local fluctuations around deterministic steady states. We compare these results to direct numerical simulation, and study the influence of noise level, noise color, distance to bifurcation and domain size on early-warning signs.Comment: Published in Communications in Nonlinear Science and Numerical Simulation (2014

    Stability of Spatial Optical Solitons

    Full text link
    We present a brief overview of the basic concepts of the soliton stability theory and discuss some characteristic examples of the instability-induced soliton dynamics, in application to spatial optical solitons described by the NLS-type nonlinear models and their generalizations. In particular, we demonstrate that the soliton internal modes are responsible for the appearance of the soliton instability, and outline an analytical approach based on a multi-scale asymptotic technique that allows to analyze the soliton dynamics near the marginal stability point. We also discuss some results of the rigorous linear stability analysis of fundamental solitary waves and nonlinear impurity modes. Finally, we demonstrate that multi-hump vector solitary waves may become stable in some nonlinear models, and discuss the examples of stable (1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons", Eds. W. Torruellas and S. Trillo (Springer, New York

    Neural Lyapunov Control

    Full text link
    We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging control problems.Comment: NeurIPS 201
    • …
    corecore