1,791 research outputs found

    Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. A Tutorial

    Full text link
    A new computational technique based on the symbolic description utilizing kneading invariants is proposed and verified for explorations of dynamical and parametric chaos in a few exemplary systems with the Lorenz attractor. The technique allows for uncovering the stunning complexity and universality of bi-parametric structures and detect their organizing centers - codimension-two T-points and separating saddles in the kneading-based scans of the iconic Lorenz equation from hydrodynamics, a normal model from mathematics, and a laser model from nonlinear optics.Comment: Journal of Bifurcations and Chaos, 201

    The Forced van der Pol Equation II: Canards in the reduced system

    Get PDF
    This is the second in a series of papers about the dynamics of the forced van der Pol oscillator [J. Guckenheimer, K. Hoffman, and W. Weckesser, SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 1–35]. The first paper described the reduced system, a two dimensional flow with jumps that reflect fast trajectory segments in this vector field with two time scales. This paper extends the reduced system to account for canards, trajectory segments that follow the unstable portion of the slow manifold in the forced van der Pol oscillator. This extension of the reduced system serves as a template for approximating the full nonwandering set of the forced van der Pol oscillator for large sets of parameter values, including parameters for which the system is chaotic. We analyze some bifurcations in the extension of the reduced system, building upon our previous work in [J. Guckenheimer, K. Hoffman, and W. Weckesser, SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 1–35]. We conclude with computations of return maps and periodic orbits in the full three dimensional flow that are compared with the computations and analysis of the reduced system. These comparisons demonstrate numerically the validity of results we derive from the study of canards in the reduced system

    PVT-Robust CMOS Programmable Chaotic Oscillator: Synchronization of Two 7-Scroll Attractors

    Get PDF
    Designing chaotic oscillators using complementary metal-oxide-semiconductor (CMOS) integrated circuit technology for generating multi-scroll attractors has been a challenge. That way, we introduce a current-mode piecewise-linear (PWL) function based on CMOS cells that allow programmable generation of 2–7-scroll chaotic attractors. The mathematical model of the chaotic oscillator designed herein has four coefficients and a PWL function, which can be varied to provide a high value of the maximum Lyapunov exponent. The coefficients are implemented electronically by designing operational transconductance amplifiers that allow programmability of their transconductances. Design simulations of the chaotic oscillator are provided for the 0.35μ m CMOS technology. Post-layout and process–voltage–temperature (PVT) variation simulations demonstrate robustness of the multi-scroll chaotic attractors. Finally, we highlight the synchronization of two seven-scroll attractors in a master–slave topology by generalized Hamiltonian forms and observer approach. Simulation results show that the synchronized CMOS chaotic oscillators are robust to PVT variations and are suitable for chaotic secure communication applications.Universidad Autónoma de Tlaxcala CACyPI-UATx-2017Program to Strengthen Quality in Educational Institutions C/PFCE-2016-29MSU0013Y-07-23National Council for Science and Technology 237991 22284

    Distinguishing noise from chaos: objective versus subjective criteria using Horizontal Visibility Graph

    Get PDF
    A recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque {\it et al.}, Phys. Rev. E., 80, 046103 (2009)] that constitutes a geometrical simplification of the well known Visibility Graph algorithm [Lacasa {\it et al.\/}, Proc. Natl. Sci. U.S.A. 105, 4972 (2008)], has been used to study the distinction between deterministic and stochastic components in time series [L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)]. Specifically, the authors propose that the node degree distribution of these processes follows an exponential functional of the form P(κ)exp(λ κ)P(\kappa)\sim \exp(-\lambda~\kappa), in which κ\kappa is the node degree and λ\lambda is a positive parameter able to distinguish between deterministic (chaotic) and stochastic (uncorrelated and correlated) dynamics. In this work, we investigate the characteristics of the node degree distributions constructed by using HVG, for time series corresponding to 2828 chaotic maps and 33 different stochastic processes. We thoroughly study the methodology proposed by Lacasa and Toral finding several cases for which their hypothesis is not valid. We propose a methodology that uses the HVG together with Information Theory quantifiers. An extensive and careful analysis of the node degree distributions obtained by applying HVG allow us to conclude that the Fisher-Shannon information plane is a remarkable tool able to graphically represent the different nature, deterministic or stochastic, of the systems under study.Comment: Submitted to PLOS On

    Evolutionary-based sparse regression for the experimental identification of duffing oscillator

    Get PDF
    In this paper, an evolutionary-based sparse regression algorithm is proposed and applied onto experimental data collected from a Duffing oscillator setup and numerical simulation data. Our purpose is to identify the Coulomb friction terms as part of the ordinary differential equation of the system. Correct identification of this nonlinear system using sparse identification is hugely dependent on selecting the correct form of nonlinearity included in the function library. Consequently, in this work, the evolutionary-based sparse identification is replacing the need for user knowledge when constructing the library in sparse identification. Constructing the library based on the data-driven evolutionary approach is an effective way to extend the space of nonlinear functions, allowing for the sparse regression to be applied on an extensive space of functions. The results show that the method provides an effective algorithm for the purpose of unveiling the physical nature of the Duffing oscillator. In addition, the robustness of the identification algorithm is investigated for various levels of noise in simulation. The proposed method has possible applications to other nonlinear dynamic systems in mechatronics, robotics, and electronics

    05391 Abstracts Collection -- Algebraic and Numerical Algorithms and Computer-assisted Proofs

    Get PDF
    From 25.09.05 to 30.09.05, the Dagstuhl Seminar 05391 ``Algebraic and Numerical Algorithms and Computer-assisted Proofs\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. Links to extended abstracts or full papers are provided, if available

    Measures of Analysis of Time Series (MATS): A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases

    Get PDF
    In many applications, such as physiology and finance, large time series data bases are to be analyzed requiring the computation of linear, nonlinear and other measures. Such measures have been developed and implemented in commercial and freeware softwares rather selectively and independently. The Measures of Analysis of Time Series ({\tt MATS}) {\tt MATLAB} toolkit is designed to handle an arbitrary large set of scalar time series and compute a large variety of measures on them, allowing for the specification of varying measure parameters as well. The variety of options with added facilities for visualization of the results support different settings of time series analysis, such as the detection of dynamics changes in long data records, resampling (surrogate or bootstrap) tests for independence and linearity with various test statistics, and discrimination power of different measures and for different combinations of their parameters. The basic features of {\tt MATS} are presented and the implemented measures are briefly described. The usefulness of {\tt MATS} is illustrated on some empirical examples along with screenshots.Comment: 25 pages, 9 figures, two tables, the software can be downloaded at http://eeganalysis.web.auth.gr/indexen.ht
    corecore