796 research outputs found

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Spectral elements for guided waves. Formulation, Dispersion Analysis and Simulation Results

    Get PDF
    RĂ©sumĂ© : La surveillance de l’intĂ©gritĂ© des structures (Structural Health Monitoring - SHM) est une nouvelle technologie, et comme toute nouvelle avancĂ©e technologique, elle n’a pas encore rĂ©alisĂ© son plein potentiel. Le SHM s’appuie sur des avancĂ©es dans plusieurs disciplines, dont l’évaluation non-desctructive, les matĂ©riaux intelligents, et les capteurs et actionneurs intĂ©grĂ©s. Une des disciplines qui permet son dĂ©ploiement est la simulation numĂ©rique. Le SHM englobe une variĂ©tĂ© de techniques basĂ©es sur la gĂ©nĂ©ration d’ondes vibratoires et d’ondes ultrasonores guidĂ©es. L’utilisation d’ondes guidĂ©es offre en particulier une vaste gamme d’avantages. Le dĂ©fi majeur associĂ© Ă  la pleine utilisation de la simulation numĂ©rique dans la conception d’un systĂšme SHM basĂ© sur l’utilisation d’ondes guidĂ©es rĂ©side dans les ressources de calcul requises pour une simulation prĂ©cise. La principale raison pour ces exigences est la dispersion induite par la discrĂ©tisation numĂ©rique, tel qu’indiquĂ© dans la littĂ©rature. La mĂ©thodes des Ă©lĂ©ments spectraux (SEM) est une variante de la p-version de la mĂ©thode des Ă©lĂ©ments finis (FEM) qui offre certains outils pour solutionner le problĂšme des erreurs de dispersion, mais la littĂ©rature souffre toujours d’une lacune dans l’étude systĂ©matique des erreurs de dispersion numĂ©rique et de sa dĂ©pendance sur les paramĂštres de simulation. Le prĂ©sent ouvrage tente de combler cette lacune pour les thĂ©ories d’ingĂ©nierie en vibrations. Il prĂ©sente d’abord le dĂ©veloppement de la formulation des Ă©lĂ©ments spectraux pour diffĂ©rentes thĂ©ories d’ingĂ©nierie pertinentes pour la propagation des ondes vibratoires dans diffĂ©rents types de structures, comme des tiges et des plaques. Puis, une nouvelle technique pour le calcul des erreurs de dispersion numĂ©riques est prĂ©sentĂ©e et appliquĂ©e systĂ©matiquement dans le but d’évaluer la dispersion numĂ©rique induite en termes d’erreurs dans les vitesses de propagation. Cette technique est utilisable pour les diffĂ©rentes formes de propagation des ondes vibratoires dans les Ă©lĂ©ments structuraux visĂ©s dans la prĂ©sente thĂšse afin d’évaluer quantitativement les exigences de prĂ©cision en termes de paramĂštres de maillage. Les ondes de Lamb constituent un cas particulier de la dĂ©formation plane des ondes Ă©lastiques, en raison de la prĂ©sence des doubles frontiĂšres Ă  traction libre qui couplent les ondes longitudinales et de cisaillement et qui conduisent Ă  une infinitĂ© de modes propagatifs qui sont dispersifs par nature. La simulation des ondes de Lamb n’a pas fait l’objet d’analyse systĂ©matique de la dispersion numĂ©rique dans la littĂ©rature autant pour la SEM que la FEM. Nous rapportons ici pour la premiĂšre fois les rĂ©sultats de l’analyse de dispersion numĂ©rique pour la propagation des ondes Lamb. Pour toutes les analyses de dispersion numĂ©rique prĂ©sentĂ©es ici, l’analyse a Ă©tĂ© effectuĂ©e à˘ala fois dans le domaine frĂ©quentiel et dans le domaine temporel. En se basant sur la nouvelle comprĂ©hension des effets de discrĂ©tisation numĂ©rique de la propagation des ondes guidĂ©es, nous Ă©tudions l’application de la SEM Ă  la simulation numĂ©rique pour des applications de conception en SHM. Pour ce faire, l’excitation piĂ©zoĂ©lectrique est dĂ©veloppĂ©e, et une nouvelle technique de condensation statique est dĂ©veloppĂ©e et mise en Ɠuvre pour les Ă©quations de la matrice semi-discrĂšte, qui Ă©limine le besoin de solution itĂ©rative, ainsi surnommĂ©e fortement couplĂ©e ou entiĂšrement couplĂ©e. Cet Ă©lĂ©ment piĂ©zoĂ©lectrique prĂ©cis est ensuite utilisĂ© pour Ă©tudier en dĂ©tails les subtilitĂ©s de la conception d’un systĂšme SHM en mettant l’accent sur la propagation des ondes de Lamb. Afin d’éviter la contamination des rĂ©sultats par les rĂ©flexions sur les bords une nouvelle forme particuliĂšre d’élĂ©ment absorbant a Ă©tĂ© dĂ©veloppĂ©e et mise en Ɠuvre. Les rĂ©sultats de simulation dans le domaine frĂ©quentiel jettent un Ă©clairage nouveau sur les limites des modĂšles thĂ©oriques actuels pour l’excitation des ondes de Lamb par piĂ©zoĂ©lectriques. L’excitation par un Ă©lĂ©ment piĂ©zoĂ©lectrique couplĂ© est ensuite entiĂšrement simulĂ©e dans le domaine temporel, et les rĂ©sultats de simulation sont validĂ©s par deux cas de mesures expĂ©rimentales ainsi que par la simulation classique avec des Ă©lĂ©ments finis en utilisant le logiciel commercial ANSYS. // Abstract : Structural health monitoring (SHM) is a novel technology, and like any new technological advancement it has yet not realized its full potential. It builds on advancements in several disciplines including nondestructive evaluation, smart materials, and embedded sensors and actuators. One of the enabling disciplines is the numerical simulation. SHM encompasses a variety of techniques, vibration based, impedance and guided ultrasonic waves. Guided waves offers a wide repertoire of advantages. The major challenge facing the full utilization of the numerical simulation in designing a viable guided waves based SHM System is the formidable computational requirements for accurate simulation. The main reason for these requirements is the dispersion induced by numerical discretization as explained in the literature review. The spectral element (SEM) is a variant of the p-version finite element (FEM) that offers certain remedies to the numerical dispersion errors problem, yet it lacks a systematic study of the numerical dispersion errors and its dependence on the meshing parameters. The present work attempts to fill that gap for engineering theories. It starts by developing the formulation of the spectral element for different relevant engineering theories for guided waves propagation in various structural elements, like rods and plates. Then, extending the utility of a novel technique for computing the numerical dispersion errors, we systematically apply it in order to evaluate the numerically induced dispersion in terms of errors in the propagation speeds. This technique is employed for the various forms of guided waves propagation in structural elements covered in the present thesis in order to quantitatively assess the accuracy requirements in terms of the meshing parameters. The Lamb guided waves constitute a special case of the plane strain elastic waves, that is due to the presence of the double traction free boundaries, couple in the section plane and this coupling leads to an infinitude of propagating modes that are dispersive in nature. Lamb waves simulation have not been a subject of numerical dispersion analysis in the open literature neither for SEM nor FEM for that matter. We report here for the first time the numerical dispersion analysis results for Lamb waves propagation. For all the numerical dispersion analysis presented here, the analysis was done for both the frequency domain and time domain analysis. Based on the established understanding of the numerical discretization effects on the guided waves propagation, we utilize this knowledge to study the application of SEM to SHM simulations. In order to do so the piezoelectric excitation is developed, and a new static condensation technique is developed for the semidiscrete matrix equations, that eliminate the need for iterative solution, thus dubbed strongly coupled or fully coupled implementation. This accurate piezoelectric element are then used to study in details the intricacies of the design of an SHM system with specific emphasis on the Lamb waves propagation. In order to avoid the contamination of the results by the reflections from the edges a new special form of absorbing boundary was developed and implemented. The Simulation results in the frequency domain illuminated the limitations of the current theoretical models for piezoelectric excitation of Lamb waves. The piezoelectric excitation of a fully coupled element is then simulated in the time domain, and the results of simulation was verified against two cases of experimental measurements as well as conventional finite element simulation using the commercial software ANSYS

    Numerical Simulation Of Guided Waves In Thin Walled Composite Structures.

    Full text link
    The success of guided waves (GW) in the area of nondestructive evaluation/testing (NDE/NDT) has spurred their utilization in structural health monitoring (SHM). GW present promising possibilities in developing SHM systems as they can travel long distances over the structure’s surface, and also through its thickness. In addition to damage detection, GW are capable of providing the overall degradation state of the material in terms of stiffness change. Wave propagation has been studied extensively for isotropic materials, but studies for composite structures are still in the beginning stages. A good understanding of the GW propagation is required to build robust and reliable SHM systems. It has been shown that Local Interaction Simulation Approach (LISA), a numerical method based on finite difference transformations, is capable of efficiently and accurately modeling GW generation, propagation, and damage interaction in engineering structures. First, the basic theoretical development for the University of Michigan Local Interaction Simulation Approach (UM-LISA) is presented. Then LISA is extended to model three-dimensional (3D) multi-layered orthotropic structures with nonuniform cell aspect ratios. The iterative equations for the simulations are extended for orthotropic materials in a non-principal axis frame, which will benefit in modeling generic laminated composite structures. The validation studies are performed against experimental data. UM-LISA is further developed to model the piezoelectric actuator effects. The iterative equations are extended for piezoelectric materials by taking into account the electromechanical coupling of the governing equilibrium equations. New constitutive and compatibility conditions are considered to account for the coupling in the electrical and mechanical parameters. The iterative equations calculate mechanical displacements in an explicit time marching scheme, whereas the electric potentials are calculated using an implicit scheme. Studies are carried out to demonstrate the improvements in modeling GW generation using piezo-coupled version of the UM-LISA framework. These studies demonstrate the advantages of UM-LISA as an advanced multiphysics numerical framework to model GW generation and propagation in thin-walled composite structures.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107138/1/nkalyan_1.pd

    Wave-based numerical methods for damage identification in components and structures

    Get PDF
    Components and structures accumulate damage during operation, which degrades their load bearing capacity and is prone to causing catastrophic failure. The demand for fuel efficiency and reduction of pollutant emissions has shifted the design of many structures, predominantly aerospace, to incorporate more composite materials. Composite materials are especially susceptible to critical failure due to operation-induced and accidental damage modes, that have adverse impact on the material strength. Timely detection and identification of damage is important in ensuring structural integrity and safety. Continuous and reliable condition monitoring of components is even more important in lightweight structures that have lower loadbearing redundancy. Recent advances in sensors and signal processing, along with the availability of computational power, have rendered model-based monitoring and damage identification solutions attractive. Computational models for wave simulation remain, however, too heavy for conventional use. Robust and efficient modelling of certain damage modes, such as cracks, introduces additional complexities in numerical models for solids. Computational cost for inverse schemes, where multiple solutions for the unknown and sought damage parameters are required, even becomes prohibitive. This work introduces mesh-independent modelling of damage through XFEM, in wave analysis. The behaviour of damage is investigated with the developed method, and validated by established explicit Finite Element models. A signal processing methodology with wavelet transform is also implemented to further investigate the feasibility of wave scattering as means of damage identification, with a view over available wave actuation and measurement methods. The proposed methodology can achieve significant model reduction calculating wave scattering. Furthermore, identification of cracks is feasible, provided multiple wavemodes can be identified and measured
    • 

    corecore