783 research outputs found

    Hidden solitons in the Zabusky-Kruskal experiment: Analysis using the periodic, inverse scattering transform

    Full text link
    Recent numerical work on the Zabusky--Kruskal experiment has revealed, amongst other things, the existence of hidden solitons in the wave profile. Here, using Osborne's nonlinear Fourier analysis, which is based on the periodic, inverse scattering transform, the hidden soliton hypothesis is corroborated, and the \emph{exact} number of solitons, their amplitudes and their reference level is computed. Other "less nonlinear" oscillation modes, which are not solitons, are also found to have nontrivial energy contributions over certain ranges of the dispersion parameter. In addition, the reference level is found to be a non-monotone function of the dispersion parameter. Finally, in the case of large dispersion, we show that the one-term nonlinear Fourier series yields a very accurate approximate solution in terms of Jacobian elliptic functions.Comment: 10 pages, 4 figures (9 images); v2: minor revision, version accepted for publication in Math. Comput. Simula

    Internal solitary waves in the ocean: Analysis using the periodic, inverse scattering transform

    Full text link
    The periodic, inverse scattering transform (PIST) is a powerful analytical tool in the theory of integrable, nonlinear evolution equations. Osborne pioneered the use of the PIST in the analysis of data form inherently nonlinear physical processes. In particular, Osborne's so-called nonlinear Fourier analysis has been successfully used in the study of waves whose dynamics are (to a good approximation) governed by the Korteweg--de Vries equation. In this paper, the mathematical details and a new application of the PIST are discussed. The numerical aspects of and difficulties in obtaining the nonlinear Fourier (i.e., PIST) spectrum of a physical data set are also addressed. In particular, an improved bracketing of the "spectral eigenvalues" (i.e., the +/-1 crossings of the Floquet discriminant) and a new root-finding algorithm for computing the latter are proposed. Finally, it is shown how the PIST can be used to gain insightful information about the phenomenon of soliton-induced acoustic resonances, by computing the nonlinear Fourier spectrum of a data set from a simulation of internal solitary wave generation and propagation in the Yellow Sea.Comment: 10 pages, 4 figures (6 images); v2: corrected a few minor mistakes and typos, version accepted for publication in Math. Comput. Simu

    Some Open Problems in Random Matrix Theory and the Theory of Integrable Systems. II

    Full text link
    We describe a list of open problems in random matrix theory and the theory of integrable systems that was presented at the conference Asymptotics in Integrable Systems, Random Matrices and Random Processes and Universality, Centre de Recherches Mathematiques, Montreal, June 7-11, 2015. We also describe progress that has been made on problems in an earlier list presented by the author on the occasion of his 60th birthday in 2005 (see [Deift P., Contemp. Math., Vol. 458, Amer. Math. Soc., Providence, RI, 2008, 419-430, arXiv:0712.0849]).Comment: for Part I see arXiv:0712.084

    Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem

    Full text link
    We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB) equations, i.e. scalar conservation laws with diffusive-dispersive regularization. We review the existence of traveling wave solutions for these two classes of evolution equations. For classical equations the traveling wave problem (TWP) for a local KdVB equation can be identified with the TWP for a reaction-diffusion equation. In this article we study this relationship for these two classes of evolution equations with nonlocal diffusion/dispersion. This connection is especially useful, if the TW equation is not studied directly, but the existence of a TWS is proven using one of the evolution equations instead. Finally, we present three models from fluid dynamics and discuss the TWP via its link to associated reaction-diffusion equations

    Approximated Lax Pairs for the Reduced Order Integration of Nonlinear Evolution Equations

    Get PDF
    A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line / on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions

    The Fermi-Pasta-Ulam problem: 50 years of progress

    Full text link
    A brief review of the Fermi-Pasta-Ulam (FPU) paradox is given, together with its suggested resolutions and its relation to other physical problems. We focus on the ideas and concepts that have become the core of modern nonlinear mechanics, in their historical perspective. Starting from the first numerical results of FPU, both theoretical and numerical findings are discussed in close connection with the problems of ergodicity, integrability, chaos and stability of motion. New directions related to the Bose-Einstein condensation and quantum systems of interacting Bose-particles are also considered.Comment: 48 pages, no figures, corrected and accepted for publicatio
    corecore