98,890 research outputs found

    NLO electroweak corrections in general scalar singlet models

    Full text link
    If no new physics signals are found, in the coming years, at the Large Hadron Collider Run-2, an increase in precision of the Higgs couplings measurements will shift the dicussion to the effects of higher order corrections. In Beyond the Standard Model (BSM) theories this may become the only tool to probe new physics. Extensions of the Standard Model (SM) with several scalar singlets may address several of its problems, namely to explain dark matter, the matter-antimatter asymmetry, or to improve the stability of the SM up to the Planck scale. In this work we propose a general framework to calculate one loop-corrections in BSM models with an arbitrary number of scalar singlets. We then apply our method to a real and to a complex scalar singlet models. We assess the importance of the one-loop radiative corrections first by computing them for a tree level mixing sum constraint, and then for the main Higgs production process gg→Hgg \to H. We conclude that, for the currently allowed parameter space of these models, the corrections can be at most a few percent. Notably, a non-zero correction can survive when dark matter is present, in the SM-like limit of the Higgs couplings to other SM particles.Comment: 35 pages, 3 figure

    The CKM parameters in the SMEFT

    Full text link
    The extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix from flavour observables can be affected by physics beyond the Standard Model (SM). We provide a general roadmap to take this into account, which we apply to the case of the Standard Model Effective Field Theory (SMEFT). We choose a set of four input observables that determine the four Wolfenstein parameters, and discuss how the effects of dimension-six operators can be included in their definition. We provide numerical values and confidence intervals for the CKM parameters, and compare them with the results of CKM fits obtained in the SM context. Our approach allows one to perform general SMEFT analyses in a consistent fashion, independently of any assumptions about the way new physics affects flavour observables. We discuss a few examples illustrating how our approach can be implemented in practice.Comment: 36 pages. Version published in JHE

    Surrogate-Based Optimization of Climate Model Parameters

    Get PDF

    Non-Gaussianity in Loop Quantum Cosmology

    Get PDF
    We extend the phenomenology of loop quantum cosmology (LQC) to second order in perturbations. Our motivation is twofold. On the one hand, since LQC predicts a cosmic bounce that takes place at the Planck scale, the second order contributions could be large enough to jeopardize the validity of the perturbative expansion on which previous results rest. On the other hand, the upper bounds on primordial non-Gaussianity obtained by the Planck Collaboration are expected to play a significant role on explorations of the LQC phenomenology. We find that the bounce in LQC produces an enhancement of non-Gaussianity of several orders of magnitude, on length scales that were larger than the curvature radius at the bounce. Nonetheless, we find that one can still rely on the perturbative expansion to make predictions about primordial perturbations. We discuss the consequences of our results for LQC and its predictions for the cosmic microwave background.Comment: Minor updates: current version matches the accepted PRD manuscrip

    Minimization procedure of experimental tests for calibration purposes, within HVAC&R energy efficiency framework

    Get PDF
    Simulation models and predictive tools need to be fast, accurate and robust at the same time. The models that have to provide numerical solutions under transient conditions for a long period of time need to be simple with the aim of minimizing the time respond, without losing the accuracy. Thus, previous experimental data and a calibration methodology are necessary to assure this objective, both are strictly necessary to reproduce the behaviour with accuracy expected. Consequently, even accurate information (e.g. look-up tables) for HVAC&R components (e.g. heat exchangers, fan/compressor, auxiliary elements, etc.) is known and all coupling system is developed, the minimization of experimental tests for calibration purposed based scattered data interpolation is now an important aspect, which looks for reducing the quantity of experiments necessary to assure the accuracy expected from an optimization point of view. The present work shows an optimization procedure based on test number minimization according detailed error comparison against existing previous data. Illustrative results for a specific component are presented highlighting test number reduction without losing accuracy.This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 755517.Peer ReviewedPostprint (published version

    Treatment of complex interfaces for Maxwell's equations with continuous coefficients using the correction function method

    Full text link
    We propose a high-order FDTD scheme based on the correction function method (CFM) to treat interfaces with complex geometry without increasing the complexity of the numerical approach for constant coefficients. Correction functions are modeled by a system of PDEs based on Maxwell's equations with interface conditions. To be able to compute approximations of correction functions, a functional that is a square measure of the error associated with the correction functions' system of PDEs is minimized in a divergence-free discrete functional space. Afterward, approximations of correction functions are used to correct a FDTD scheme in the vicinity of an interface where it is needed. We perform a perturbation analysis on the correction functions' system of PDEs. The discrete divergence constraint and the consistency of resulting schemes are studied. Numerical experiments are performed for problems with different geometries of the interface. A second-order convergence is obtained for a second-order FDTD scheme corrected using the CFM. High-order convergence is obtained with a corrected fourth-order FDTD scheme. The discontinuities within solutions are accurately captured without spurious oscillations.Comment: 29 pages, 12 figures, modification of Acknowledgment
    • …
    corecore