552 research outputs found

    A new operational matrix based on Bernoulli polynomials

    Full text link
    In this research, the Bernoulli polynomials are introduced. The properties of these polynomials are employed to construct the operational matrices of integration together with the derivative and product. These properties are then utilized to transform the differential equation to a matrix equation which corresponds to a system of algebraic equations with unknown Bernoulli coefficients. This method can be used for many problems such as differential equations, integral equations and so on. Numerical examples show the method is computationally simple and also illustrate the efficiency and accuracy of the method

    Numerical Approximate Methods for Solving Linear and Nonlinear Integral Equations

    Get PDF
    Integral equation has been one of the essential tools for various area of applied mathematics. In this work, we employed different numerical methods for solving both linear and nonlinear Fredholm integral equations. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations. Integral equations can be viewed as equations which are results of transformation of points in a given vector spaces of integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is concerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral operator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral equations can be developed. This work, specially, deals with the development of different wavelet methods for solving integral and intgro-differential equations. Wavelets theory is a relatively new and emerging area in mathematical research. It has been applied in a wide range of engineering disciplines; particularly, wavelets are very successfully used in signal analysis for waveform representations and segmentations, time frequency analysis, and fast algorithms for easy implementation. Wavelets permit the accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical algorithms. Wavelets can be separated into two distinct types, orthogonal and semi-orthogonal. The preliminary concept of integral equations and wavelets are first presented in Chapter 1. Classification of integral equations, construction of wavelets and multi-resolution analysis (MRA) have been briefly discussed and provided in this chapter. In Chapter 2, different wavelet methods are constructed and function approximation by these methods with convergence analysis have been presented. In Chapter 3, linear semi-orthogonal compactly supported B-spline wavelets together with their dual wavelets have been applied to approximate the solutions of Fredholm integral equations (both linear and nonlinear) of the second kind and their systems. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. Convergence analysis of B-spline method has been discussed in this chapter. Again, in Chapter 4, system of nonlinear Fredholm integral equations have been solved by using hybrid Legendre Block-Pulse functions and xiii Bernstein collocation method. In Chapter 5, two practical problems arising from chemical phenomenon, have been modeled as Fredholm- Hammerstein integral equations and solved numerically by different numerical techniques. First, COSMO-RS model has been solved by Bernstein collocation method, Haar wavelet method and Sinc collocation method. Second, Hammerstein integral equation arising from chemical reactor theory has been solved by B-spline wavelet method. Comparison of results have been demonstrated through illustrative examples. In Chapter 6, Legendre wavelet method and Bernoulli wavelet method have been developed to solve system of integro-differential equations. Legendre wavelets along with their operational matrices are developed to approximate the solutions of system of nonlinear Volterra integro-differential equations. Also, nonlinear Volterra weakly singular integro-differential equations system has been solved by Bernoulli wavelet method. The properties of these wavelets are used to reduce the system of integral equations to a system of algebraic equations which can be solved numerically by Newton's method. Rigorous convergence analysis has been done for these wavelet methods. Illustrative examples have been included to demonstrate the validity and applicability of the proposed techniques. In Chapter 7, we have solved the second order Lane-Emden type singular differential equation. First, the second order differential equation is transformed into integro-differential equation and then solved by Legendre multi-wavelet method and Chebyshev wavelet method. Convergence of these wavelet methods have been discussed in this chapter. In Chapter 8, we have developed a efficient collocation technique called Legendre spectral collocation method to solve the Fredholm integro-differential-difference equations with variable coefficients and system of two nonlinear integro-differential equations which arise in biological model. The proposed method is based on the Gauss-Legendre points with the basis functions of Lagrange polynomials. The present method reduces this model to a system of nonlinear algebraic equations and again this algebraic system has been solved numerically by Newton's method. The study of fuzzy integral equations and fuzzy differential equations is an emerging area of research for many authors. In Chapter 9, we have proposed some numerical techniques for solving fuzzy integral equations and fuzzy integro-differential equations. Fundamentals of fuzzy calculus have been discussed in this chapter. Nonlinear fuzzy Hammerstein integral equation has been solved by Bernstein polynomials and Legendre wavelets, and then compared with homotopy analysis method. We have solved nonlinear fuzzy Hammerstein Volterra integral equations with constant delay by Bernoulli wavelet method and then compared with B-spline wavelet method. Finally, fuzzy integro-differential equation has been solved by Legendre wavelet method and compared with homotopy analysis method. In fuzzy case, we have applied two-dimensional numerical methods which are discussed in chapter 2. Convergence analysis and error estimate have been also provided for Bernoulli wavelet method. xiv The study of fractional calculus, fractional differential equations and fractional integral equations has a great importance in the field of science and engineering. Most of the physical phenomenon can be best modeled by using fractional calculus. Applications of fractional differential equations and fractional integral equations create a wide area of research for many researchers. This motivates to work on fractional integral equations, which results in the form of Chapter 10. First, the preliminary definitions and theorems of fractional calculus have been presented in this chapter. The nonlinear fractional mixed Volterra-Fredholm integro-differential equations along with mixed boundary conditions have been solved by Legendre wavelet method. A numerical scheme has been developed by using Petrov-Galerkin method where the trial and test functions are Legendre wavelets basis functions. Also, this method has been applied to solve fractional Volterra integro-differential equations. Uniqueness and existence of the problem have been discussed and the error estimate of the proposed method has been presented in this work. Sinc Galerkin method is developed to approximate the solution of fractional Volterra-Fredholm integro-differential equations with weakly singular kernels. The proposed method is based on the Sinc function approximation. Uniqueness and existence of the problem have been discussed and the error analysis of the proposed method have been presented in this chapte

    A novel Chebyshev wavelet method for solving fractional-order optimal control problems

    Get PDF
    This thesis presents a numerical approach based on generalized fractional-order Chebyshev wavelets for solving fractional-order optimal control problems. The exact value of the Riemann– Liouville fractional integral operator of the generalized fractional-order Chebyshev wavelets is computed by applying the regularized beta function. We apply the given wavelets, the exact formula, and the collocation method to transform the studied problem into a new optimization problem. The convergence analysis of the proposed method is provided. The present method is extended for solving fractional-order, distributed-order, and variable-order optimal control problems. Illustrative examples are considered to show the advantage of this method in comparison with the existing methods in the literature

    Solving fractional optimal control of systems described by the fractional order differential equations by using Bernoulli wavelets

    Get PDF
    This paper presents a new numerical method for a class of fractional optimal control problems (FOCPs). The fractional derivative is described in the Caputo sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of fractional differential equations (FDEs). The method is based upon Bernoulli wavelets. The Bernoulli wavelets is first introduced. The operational matrices of fractional Riemann-Liouville integration and multiplication are derived and are utilized to reduce the given optimization problem to system of algebraic equations. Numerical solutions are presented to demonstrate the feasibility of the method

    A novel third kind Chebyshev wavelet collocation method for the numerical solution of stochastic fractional Volterra integro-differential equations

    Get PDF
    In the formulation of natural processes like emissions, population development, financial markets, and the mechanical systems, in which the past affect both the present and the future, Volterra integro-differential equations appear. Moreover, as many phenomena in the real world suffer from disturbances or random noise, it is normal and healthy for them to go from probabilistic models to stochastic models. This article introduces a new approach to solve stochastic fractional Volterra integro-differential equations based on the operational matrix method of Chebyshev wavelets of third kind and stochastic operational matrix of Chebyshev wavelets of third kind. Also, we have given the convergence and error analysis of the proposed method. A variety of numerical experiments are carried out to demonstrate our theoretical findings.Publisher's Versio

    Numerical Solution of Fractional Partial Differential Equations with Normalized Bernstein Wavelet Method

    Get PDF
    In this paper, normalized Bernstein wavelets are presented. Next, the fractional order integration and Bernstein wavelets operational matrices of integration are derived and finally are used for solving fractional partial differential equations. The operational matrices merged with the collocation method are used in order to convert fractional problems to a number of algebraic equations. In the suggested method the boundary conditions are automatically taken into consideration. An assessment of the error of function approximation based on the normalized Bernstein wavelet is also presented. Some numerical instances are given to manifest the versatility and applicability of the suggested method. Founded numerical results are correlated with the best reported results in the literature and the analytical solutions in order to prove the accuracy and applicability of the suggested method

    Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations

    Get PDF
    In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved

    Second kind Chebyshev collocation technique for Volterra-Fredholm fractional order integro-differential equations

    Get PDF
    In this work, we present the numerical solution of fractional order Volterra–Fredholm integro-differential equations using the second kind of Chebyshev collocation technique. First, we transformed the problem into a system of linear algebraic equations, which are then solved using matrix inversion to obtain the unknown constants. Furthermore, numerical examples are used to outline the method’s accuracy and efficiency using tables and figures. The results show that the method performed better in terms of improving accuracy and requiring less rigorous work.©2022 JNSMR UIN Walisongo. All rights reserved
    corecore