21,595 research outputs found

    Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

    Full text link
    We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350\,K below log tau < -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.Comment: A&A, in pres

    Time-dependent hydrogen ionisation in the solar chromosphere. I: Methods and first results

    Full text link
    An approximate method for solving the rate equations for the hydrogen populations was extended and implemented in the three-dimensional radiation (magneto-)hydrodynamics code CO5BOLD. The method is based on a model atom with six energy levels and fixed radiative rates. It has been tested extensively in one-dimensional simulations. The extended method has been used to create a three-dimensional model that extends from the upper convection zone to the chromosphere. The ionisation degree of hydrogen in our time-dependent simulation is comparable to the corresponding equilibrium value up to 500 km above optical depth unity. Above this height, the non-equilibrium ionisation degree is fairly constant over time and space, and tends to be at a value set by hot propagating shock waves. The hydrogen level populations and electron density are much more constant than the corresponding values for statistical equilibrium, too. In contrast, the equilibrium ionisation degree varies by more than 20 orders of magnitude between hot, shocked regions and cool, non-shocked regions. The simulation shows for the first time in 3D that the chromospheric hydrogen ionisation degree and electron density cannot be calculated in equilibrium. Our simulation can provide realistic values of those quantities for detailed radiative transfer computations.Comment: 8 pages, 7 figure
    • …
    corecore