13,735 research outputs found

    Qualitative stability and synchronicity analysis of power network models in port-Hamiltonian form

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Chaos 28, 101102 (2018) and may be found at https://doi.org/10.1063/1.5054850.In view of highly decentralized and diversified power generation concepts, in particular with renewable energies, the analysis and control of the stability and the synchronization of power networks is an important topic that requires different levels of modeling detail for different tasks. A frequently used qualitative approach relies on simplified nonlinear network models like the Kuramoto model with inertia. The usual formulation in the form of a system of coupled ordinary differential equations is not always adequate. We present a new energy-based formulation of the Kuramoto model with inertia as a polynomial port-Hamiltonian system of differential-algebraic equations, with a quadratic Hamiltonian function including a generalized order parameter. This leads to a robust representation of the system with respect to disturbances: it encodes the underlying physics, such as the dissipation inequality or the deviation from synchronicity, directly in the structure of the equations, and it explicitly displays all possible constraints and allows for robust simulation methods. The model is immersed into a system of model hierarchies that will be helpful for applying adaptive simulations in future works. We illustrate the advantages of the modified modeling approach with analytics and numerical results. To reach the goal of temperature reduction to limit the climate change, as stipulated at the Paris Conference in 2015, it is necessary to integrate renewable energy sources into the existing power networks. Wind and solar power are the most promising ones, but the integration into the electric power grid remains an enormous challenge due to their variability that requires storage facilities, back-up plants, and accurate control processing. The current approach to describe the dynamics of power grids in terms of simplified nonlinear models, like the Kuramoto model with inertia, may not be appropriate when different control and optimization tasks are needed to be addressed. Under this aspect, we present a new energy-based formulation of the Kuramoto model with inertia that allows for an easy extension if further effects have to be included and higher fidelity is required for qualitative analysis. We illustrate the new modeling approach with analytic results and numerical simulations carried out for a semi-realistic model of the Italian grid and indicate how this approach can be generalized to models of finer granularity.DFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Determination of efficiencies, loss mechanisms, and performance degradation factors in chopper controlled dc vehical motors. Section 2: The time dependent finite element modeling of the electromagnetic field in electrical machines: Methods and applications

    Get PDF
    The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones
    • …
    corecore