2 research outputs found

    On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem

    Get PDF
    In this paper we deal with construction and analysis of a multiwavelet spectral element scheme for a generalized Cauchy type problem with Caputo fractional derivative. Numerical schemes for this type of problems, often suffer from the draw-back of spurious oscillations. A common remedy is to render the problem to an equivalent integral equation. For the generalized Cauchy type problem, a corresponding integral equation is of nonlinear Volterra type. In this paper we investigate wellposedness and convergence of a stabilizing multiwavelet scheme for a, one-dimensional case (in [a,\ua0b] or [0,\ua01]), of this problem. Based on multiwavelets, we construct an approximation procedure for the fractional integral operator that yields a linear system of equations with sparse coefficient matrix. In this setting, choosing an appropriate threshold, the number of non-zero coefficients in the system is substantially reduced. A severe obstacle in the convergence analysis is the lack of continuous derivatives in the vicinity of the inflow/ starting boundary point. We overcome this issue through separating a J (mesh)-dependent, small, neighborhood of a (or origin) from the interval, where we only take L2-norm. The estimate in this part relies on Chebyshev polynomials, viz. As reported by Richardson(Chebyshev interpolation for functions with endpoint singularities via exponential and double-exponential transforms, Oxford University, UK, 2012) and decreases, almost, exponentially by raising J. At the remaining part of the domain the solution is sufficiently regular to derive the desired optimal error bound. We construct such a modified scheme and analyze its wellposedness, efficiency and accuracy. The robustness of the proposed scheme is confirmed implementing numerical examples

    Fractional Calculus and Special Functions with Applications

    Get PDF
    The study of fractional integrals and fractional derivatives has a long history, and they have many real-world applications because of their properties of interpolation between integer-order operators. This field includes classical fractional operators such as Riemann–Liouville, Weyl, Caputo, and Grunwald–Letnikov; nevertheless, especially in the last two decades, many new operators have also appeared that often define using integrals with special functions in the kernel, such as Atangana–Baleanu, Prabhakar, Marichev–Saigo–Maeda, and the tempered fractional equation, as well as their extended or multivariable forms. These have been intensively studied because they can also be useful in modelling and analysing real-world processes, due to their different properties and behaviours from those of the classical cases.Special functions, such as Mittag–Leffler functions, hypergeometric functions, Fox's H-functions, Wright functions, and Bessel and hyper-Bessel functions, also have important connections with fractional calculus. Some of them, such as the Mittag–Leffler function and its generalisations, appear naturally as solutions of fractional differential equations. Furthermore, many interesting relationships between different special functions are found by using the operators of fractional calculus. Certain special functions have also been applied to analyse the qualitative properties of fractional differential equations, e.g., the concept of Mittag–Leffler stability.The aim of this reprint is to explore and highlight the diverse connections between fractional calculus and special functions, and their associated applications
    corecore