394 research outputs found

    Sparse spectral methods for integral equations and equilibrium measures

    Get PDF
    In this thesis, we introduce new numerical approaches to two important types of integral equation problems using sparse spectral methods. First, linear as well as nonlinear Volterra integral and integro-differential equations and second, power-law integral equations on d-dimensional balls involved in the solution of equilibrium measure problems. These methods are based on ultraspherical spectral methods and share key properties and advantages as a result of their joint starting point: By working in appropriately weighted orthogonal Jacobi polynomial bases, we obtain recursively generated banded operators allowing us to obtain high precision solutions at low computational cost. This thesis consists of three chapters in which the background of the above-mentioned problems and methods are respectively introduced in the context of their mathematical theory and applications, the necessary results to construct the operators and obtain solutions are proved and the method's applicability and efficiency are showcased by comparing them with current state-of-the-art approaches and analytic results where available. The first chapter gives a general scope introduction to sparse spectral methods using Jacobi polynomials in one and higher dimensions. The second chapter concerns the numerical solution of Volterra integral equations. The introduced method achieves exponential convergence and works for general kernels, a major advantage over comparable methods which are limited to convolution kernels. The third chapter introduces an approximately banded method to solve power law kernel equilibrium measures in arbitrary dimensional balls. This choice of domain is suggested by the radial symmetry of the problem and analytic results on the supports of the resulting measures. For our method, we obtain the crucial property of computational cost independent of the dimension of the domain, a major contrast to particle simulations which are the current standard approach to these problems and scale extremely poorly with both the dimension and the number of particles.Open Acces

    An Adaptive Method for Calculating Blow-Up Solutions

    Get PDF
    Reactive-diffusive systems modeling physical phenomena in certain situations develop a singularity at a finite value of the independent variable referred to as blow-up. The attempt to find the blow-up time analytically is most often impossible, thus requiring a numerical determination of the value. The numerical methods often use a priori knowledge of the blow-up solution such as monotonicity or self-similarity. For equations where such a priori knowledge is unavailable, ad hoc methods were constructed. The object of this research is to develop a simple and consistent approach to find numerically the blow-up solution without having a priori knowledge or resorting to other ad hoc methods. The proposed method allows the investigator the ability to distinguish whether a singular solution or a non-singular solution exists on a given interval. Step size in the vicinity of a singular solution is automatically adjusted. The programming of the proposed method is simple and uses well-developed software for most of the auxiliary routines. The proposed numerical method is mainly concerned with the integration of nonlinear integral equations with Abel-type kernels developed from combustion problems, but may be used on similar equations from other fields. To demonstrate the flexibility of the proposed method, it is applied to ordinary differential equations with blow-up solutions or to ordinary differential equations which exhibit extremely stiff structure

    Numerical analysis of some integral equations with singularities

    Get PDF
    In this thesis we consider new approaches to the numerical solution of a class of Volterra integral equations, which contain a kernel with singularity of non-standard type. The kernel is singular in both arguments at the origin, resulting in multiple solutions, one of which is differentiable at the origin. We consider numerical methods to approximate any of the (infinitely many) solutions of the equation. We go on to show that the use of product integration over a short primary interval, combined with the careful use of extrapolation to improve the order, may be linked to any suitable standard method away from the origin. The resulting split-interval algorithm is shown to be reliable and flexible, capable of achieving good accuracy, with convergence to the one particular smooth solution.Supported by a college bursary from the University of Chester

    Convolution spline approximations for time domain boundary integral equations

    Get PDF
    We introduce a new "convolution spline'' temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ) but, instead of being based on an underlying ODE solver, the approximation is explicitly constructed in terms of compactly supported basis functions. This results in sparse system matrices and makes it computationally more efficient than using the linear multistep version of CQ for TDBIE time-stepping. We use a Volterra integral equation (VIE) to illustrate the derivation of this new approach: at time step t_n = n\dt the VIE solution is approximated in a backwards-in-time manner in terms of basis functions Ο•j\phi_j by u(t_n-t) \approx \sum_{j=0}^n u_{n-j}\,\phi_j(t/\dt) for t∈[0,tn]t \in [0,t_n]. We show that using isogeometric B-splines of degree mβ‰₯1m\ge 1 on [0,∞)[0,\infty) in this framework gives a second order accurate scheme, but cubic splines with the parabolic runout conditions at t=0t=0 are fourth order accurate. We establish a methodology for the stability analysis of VIEs and demonstrate that the new methods are stable for non-smooth kernels which are related to convergence analysis for TDBIEs, including the case of a Bessel function kernel oscillating at frequency \oo(1/\dt). Numerical results for VIEs and for TDBIE problems on both open and closed surfaces confirm the theoretical predictions

    Discrete-time linear and nonlinear aerodynamic impulse responses for efficient CFD analyses

    Get PDF
    This dissertation discusses the mathematical existence and the numerical identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner\u27s function), forced harmonic responses (such as Theodorsen\u27s function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This will establish the aerodynamic discrete-time impulse response function as the most fundamental and computationally efficient aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this dissertation help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories.;Nonlinear aerodynamic impulse responses are identified using the Volterra theory of nonlinear systems. The theory is described and a discrete-time kernel identification technique is presented. The kernel identification technique is applied to a simple nonlinear circuit for illustrative purposes. The method is then applied to the nonlinear viscous Burger\u27s equation as an example of an application to a simple CFD model. Finally, the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code.;Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time systems
    • …
    corecore