8,087 research outputs found

    Sparse Automatic Differentiation for Large-Scale Computations Using Abstract Elementary Algebra

    Full text link
    Most numerical solvers and libraries nowadays are implemented to use mathematical models created with language-specific built-in data types (e.g. real in Fortran or double in C) and their respective elementary algebra implementations. However, built-in elementary algebra typically has limited functionality and often restricts flexibility of mathematical models and analysis types that can be applied to those models. To overcome this limitation, a number of domain-specific languages with more feature-rich built-in data types have been proposed. In this paper, we argue that if numerical libraries and solvers are designed to use abstract elementary algebra rather than language-specific built-in algebra, modern mainstream languages can be as effective as any domain-specific language. We illustrate our ideas using the example of sparse Jacobian matrix computation. We implement an automatic differentiation method that takes advantage of sparse system structures and is straightforward to parallelize in MPI setting. Furthermore, we show that the computational cost scales linearly with the size of the system.Comment: Submitted to ACM Transactions on Mathematical Softwar

    Monolithic simulation of convection-coupled phase-change - verification and reproducibility

    Full text link
    Phase interfaces in melting and solidification processes are strongly affected by the presence of convection in the liquid. One way of modeling their transient evolution is to couple an incompressible flow model to an energy balance in enthalpy formulation. Two strong nonlinearities arise, which account for the viscosity variation between phases and the latent heat of fusion at the phase interface. The resulting coupled system of PDE's can be solved by a single-domain semi-phase-field, variable viscosity, finite element method with monolithic system coupling and global Newton linearization. A robust computational model for realistic phase-change regimes furthermore requires a flexible implementation based on sophisticated mesh adaptivity. In this article, we present first steps towards implementing such a computational model into a simulation tool which we call Phaseflow. Phaseflow utilizes the finite element software FEniCS, which includes a dual-weighted residual method for goal-oriented adaptive mesh refinement. Phaseflow is an open-source, dimension-independent implementation that, upon an appropriate parameter choice, reduces to classical benchmark situations including the lid-driven cavity and the Stefan problem. We present and discuss numerical results for these, an octadecane PCM convection-coupled melting benchmark, and a preliminary 3D convection-coupled melting example, demonstrating the flexible implementation. Though being preliminary, the latter is, to our knowledge, the first published 3D result for this method. In our work, we especially emphasize reproducibility and provide an easy-to-use portable software container using Docker.Comment: 20 pages, 8 figure

    A Numerical Slow Manifold Approach to Model Reduction for Optimal Control of Multiple Time Scale ODE

    Full text link
    Time scale separation is a natural property of many control systems that can be ex- ploited, theoretically and numerically. We present a numerical scheme to solve optimal control problems with considerable time scale separation that is based on a model reduction approach that does not need the system to be explicitly stated in singularly perturbed form. We present examples that highlight the advantages and disadvantages of the method
    • …
    corecore