469 research outputs found

    Studies of Phase Turbulence in the One Dimensional Complex Ginzburg-Landau Equation

    Full text link
    The phase-turbulent (PT) regime for the one dimensional complex Ginzburg-Landau equation (CGLE) is carefully studied, in the limit of large systems and long integration times, using an efficient new integration scheme. Particular attention is paid to solutions with a non-zero phase gradient. For fixed control parameters, solutions with conserved average phase gradient ν\nu exist only for ∣ν∣|\nu| less than some upper limit. The transition from phase to defect-turbulence happens when this limit becomes zero. A Lyapunov analysis shows that the system becomes less and less chaotic for increasing values of the phase gradient. For high values of the phase gradient a family of non-chaotic solutions of the CGLE is found. These solutions consist of spatially periodic or aperiodic waves travelling with constant velocity. They typically have incommensurate velocities for phase and amplitude propagation, showing thereby a novel type of quasiperiodic behavior. The main features of these travelling wave solutions can be explained through a modified Kuramoto-Sivashinsky equation that rules the phase dynamics of the CGLE in the PT phase. The latter explains also the behavior of the maximal Lyapunov exponents of chaotic solutions.Comment: 16 pages, LaTeX (Version 2.09), 10 Postscript-figures included, submitted to Phys. Rev.

    Self-Induced Faraday Instability Laser

    Get PDF
    We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modelin

    Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models

    Get PDF
    In this work we consider a quite general class of two-species hyperbolic reaction-advection-diffusion system with the main aim of elucidating the role played by inertial effects in the dynamics of oscillatory periodic patterns. To this aim, first, we use linear stability analysis techniques to deduce the conditions under which wave (or oscillatory Turing) instability takes place. Then, we apply multiple-scale weakly nonlinear analysis to determine the equation which rules the spatiotemporal evolution of pattern amplitude close to criticality. This investigation leads to a cubic complex Ginzburg-Landau (CCGL) equation which, owing to the functional dependence of the coefficients here involved on the inertial times, reveals some intriguing consequences. To show in detail the richness of such a scenario, we present, as an illustrative example, the pattern dynamics occurring in the hyperbolic generalization of the extended Klausmeier model. This is a simple two-species model used to describe the migration of vegetation stripes along the hillslope of semiarid environments. By means of a thorough comparison between analytical predictions and numerical simulations, we show that inertia, apart from enlarging the region of the parameter plane where wave instability occurs, may also modulate the key features of the coherent structures, solution of the CCGL equation. In particular, it is proven that inertial effects play a role, not only during transient regime from the spatially-homogeneous steady state toward the patterned state, but also in altering the amplitude, the wavelength, the angular frequency, and even the stability of the phase-winding solutions

    Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. I: General presentation and periodic solutions

    Full text link
    We present experimental results on hydrothermal traveling-waves dynamics in long and narrow 1D channels. The onset of primary traveling-wave patterns is briefly presented for different fluid heights and for annular or bounded channels, i.e., within periodic or non-periodic boundary conditions. For periodic boundary conditions, by increasing the control parameter or changing the discrete mean-wavenumber of the waves, we produce modulated waves patterns. These patterns range from stable periodic phase-solutions, due to supercritical Eckhaus instability, to spatio-temporal defect-chaos involving traveling holes and/or counter-propagating-waves competition, i.e., traveling sources and sinks. The transition from non-linearly saturated Eckhaus modulations to transient pattern-breaks by traveling holes and spatio-temporal defects is documented. Our observations are presented in the framework of coupled complex Ginzburg-Landau equations with additional fourth and fifth order terms which account for the reflection symmetry breaking at high wave-amplitude far from onset. The second part of this paper (nlin.PS/0208030) extends this study to spatially non-periodic patterns observed in both annular and bounded channel.Comment: 45 pages, 21 figures (elsart.cls + AMS extensions). Accepted in Physica D. See also companion paper "Nonlinear dynamics of waves and modulated waves in 1D thermocapillary flows. II: Convective/absolute transitions" (nlin.PS/0208030). A version with high resolution figures is available on N.G. web pag

    Dynamics of Waves and Patterns (hybrid meeting)

    Get PDF
    The dynamics of waves and patterns play a significant role in the sciences, especially in fluid mechanics, material science, neuroscience and ecology. The mathematical treatment interconnects several areas, ranging from evolution equations and functional analysis to dynamical systems, geometry, topology, and stochastic as well as numerical analysis. This workshop has specifically focussed on dynamic stability on extended domains, bifurcations of waves and patterns, effects of stochastic driving, and spatio-temporal inhomogenities. During the workshop, multiple new directions, collaborations, and very interesting scientific conversations arose across the entire field

    Dynamics of Patterns

    Get PDF
    Patterns and nonlinear waves arise in many applications. Mathematical descriptions and analyses draw from a variety of fields such as partial differential equations of various types, differential and difference equations on networks and lattices, multi-particle systems, time-delayed systems, and numerical analysis. This workshop brought together researchers from these diverse areas to bridge existing gaps and to facilitate interaction

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF
    • …
    corecore