4,969 research outputs found

    On the Modeling of Droplet Evaporation on Superhydrophobic Surfaces

    Full text link
    When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surface's grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplet's final wetting state with constant volume, and show that it depends strongly on the surface texture. We then vary the volume of the droplet keeping fixed the geometric surface parameters to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show a very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and theoretical model can be modified to study other types of surface.Comment: 23 pages, 7 figure

    Electronic Excitations in Complex Molecular Environments: Many-Body Green's Functions Theory in VOTCA-XTP

    Get PDF
    Many-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identify techniques, the code is designed specifically for non-periodic systems. Application to the small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2-8 eV in single molecules. Further, embedding each GW-BSE calculation into an atomistically resolved surrounding, typically obtained from Molecular Dynamics, accounts for effects originating from local fields and polarization. Using aqueous DNA as a prototypical system, different levels of electrostatic coupling between the regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid to charge-transfer (CT) excitations in adenine base pairs. It is found that their energy is extremely sensitive to the specific environment and to polarization effects. The calculated redshift of the CT excitation energy compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which matches expectations from experimental data. Predicted lowest CT energies are below that of a single nucleobase excitation, indicating the possibility of an initial (fast) decay of such an UV excited state into a bi-nucleobase CT exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to study a wide range of types of electronic excitations in complex molecular environments

    Phase transitions in Pareto optimal complex networks

    Full text link
    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem finding phase transitions of different kinds. Distinct phases are associated to different arrangements of the connections; but the need of drastic topological changes does not determine the presence, nor the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.Comment: 14 pages, 7 figure

    Path Similarity Analysis: a Method for Quantifying Macromolecular Pathways

    Full text link
    Diverse classes of proteins function through large-scale conformational changes; sophisticated enhanced sampling methods have been proposed to generate these macromolecular transition paths. As such paths are curves in a high-dimensional space, they have been difficult to compare quantitatively, a prerequisite to, for instance, assess the quality of different sampling algorithms. The Path Similarity Analysis (PSA) approach alleviates these difficulties by utilizing the full information in 3N-dimensional trajectories in configuration space. PSA employs the Hausdorff or Fr\'echet path metrics---adopted from computational geometry---enabling us to quantify path (dis)similarity, while the new concept of a Hausdorff-pair map permits the extraction of atomic-scale determinants responsible for path differences. Combined with clustering techniques, PSA facilitates the comparison of many paths, including collections of transition ensembles. We use the closed-to-open transition of the enzyme adenylate kinase (AdK)---a commonly used testbed for the assessment enhanced sampling algorithms---to examine multiple microsecond equilibrium molecular dynamics (MD) transitions of AdK in its substrate-free form alongside transition ensembles from the MD-based dynamic importance sampling (DIMS-MD) and targeted MD (TMD) methods, and a geometrical targeting algorithm (FRODA). A Hausdorff pairs analysis of these ensembles revealed, for instance, that differences in DIMS-MD and FRODA paths were mediated by a set of conserved salt bridges whose charge-charge interactions are fully modeled in DIMS-MD but not in FRODA. We also demonstrate how existing trajectory analysis methods relying on pre-defined collective variables, such as native contacts or geometric quantities, can be used synergistically with PSA, as well as the application of PSA to more complex systems such as membrane transporter proteins.Comment: 9 figures, 3 tables in the main manuscript; supplementary information includes 7 texts (S1 Text - S7 Text) and 11 figures (S1 Fig - S11 Fig) (also available from journal site

    Computational Modeling of S-Thiolation Reaction: Toward Discovering the Enzymatic Mechanisms of Endogenous HNO Formation

    Get PDF
    S-nitrosothiols (RSNOs) have long been proposed as potential sources of the elusive endogenous nitroxyl (HNO) via S-thiolation reaction with thiols. It is however not clear how S-thiolation can compete with the trans-S-nitrosation pathway commonly observed in vitro. Based on the insights into the highly unusual, antagonistic chemical nature of RSNO molecules, we hypothesize that, while difficult in vitro, S-thiolation could easily lend itself to enzymatic catalysis. To explore this possibility, we adopted a bottom-up computational approach that aims to identify possible catalytic mechanisms able to steer the RSNO + thiol reaction toward HNO production. Inspired by recent discovery of small bioactive HSNO molecule and its involvement in HNO production, we first study HSNO molecule and its subsequent isomerization reactions that can possibly lead to other potentially bioactive small molecules or reactive intermediates that can undergo S-thiolation reaction. Then, we mapped out the profile of the uncatalysed S-thiolation reaction that suggests that the most difficult step of S-thiolation is the R’SH to RSNO proton transfer, and that the reaction proceeds through unusual highly polar zwitterionic species R’SS+(R)N(H)O– that further decomposes yielding HNO and disulfide RSSR’. Therefore, facilitating the proton transfer and stabilizing this zwitterionic intermediate could lead to dramatic acceleration of this reaction. Further, we identified the required arrangements of amino acid residues using theozyme (‘theoretical enzyme’) modeling. These calculations showed that several of these putative active site models can drop the energetic barrier for S-thiolation/HNO formation to less than 10 kcal/mol. An extensive search in the RCSB protein data bank yielded over 600 structures that match one of these successful theozyme models. Remarkably, among these proteins we found DJ-1 protein known to be involved in RSNO-related processes. Furthermore, full-scale modeling of S-thiolation between an incoming RSNO and DJ-1 Cys106 using a hybrid quantum mechanics/molecular mechanics approach have shown that the reaction can be indeed efficiently catalyzed by the His126–Glu18 dyad, a prediction whose relevance to the DJ-1/RSNO biochemistry presents an intriguing question to the experimentalists

    Modeling biomolecules: interactions, forces and free energies

    Get PDF
    La biología ha sido tradicionalmente una ciencia cualitativa. El principal problema que presenta es que trata con sistemas muy complejos, mucho más que las moléculas de las que se ocupa la química, o que muchos sistemas físicos. Sin embargo, en los últimos años, hemos sido testigos de un desarrollo enorme hacia planteamientos cuantitativos para resolver problemas biológicos, impulsado principalmente por el desarrollo de diversas técnicas avanzadas en biofísica, o por la emergencia de las herramientas computacionales. En particular, en biofísica computacional, dado un determinado problema a estudiar, la estrategia es proponer un modelo que describa el comportamiento de nuestro sistema y realizar simulaciones numéricas sobre este modelo. Este planteamiento presenta una dificultad principal que es la elección de la escala a la cual realizamos nuestro modelo. Es necesario llegar a un compromiso entre el nivel de detalle y la capacidad computacional de que disponemos. Así, modelos muy detallados son capaces de proporcionar información de gran resolución, sin embargo sólo para sistemas moleculares de tamaño limitado, con propiedades que se manifiesten a escalas temporales cortas. Si necesitamos tratar con sistemas de mayor tamaño, o nos interesan propiedades que se manifiestan en escalas temporales mayores, es necesario identificar cuáles son los grados de libertad relevantes para nuestro sistema y despreciar el resto. Aparte de este problema, el siguiente reto que se nos plantea es transformar todos los datos numéricos producidos en información relevante que pueda responder de manera objetiva a las preguntas que nos planteamos. Para ello, debemos disponer de métodos de análisis lo bastante robustos como para transformar la información en bruto producida en nuestras simulaciones, en conocimiento directo de una manera no sesgada. La presente Tesis Doctoral se enmarca en este ámbito, ya que estudiaremos tres problemas biológicos diferentes haciendo énfasis en la fase de modelización de nuestro sistema, así como en el empleo de técnicas de análisis avanzadas para comprenderlo. En la primera parte, nos centramos en el análisis de la dinámica de proteínas, enfatizando las distintas descripciones que pueden usarse para comprender su paisaje de energía libre. Para ello escogemos un sistema relativamente simple, una proteína modelo coarse-grained a la cual aplicamos una fuerza constante para promover su desplegamiento. Realizaremos simulaciones numéricas en este sistema y nos plantearemos cuál es la mejor manera de obtener una descripción fiel de su espacio configuracional así como de su mecanismo de desplegamiento. Para ello emplearemos dos métodos distintos. Primero, proyectaremos su paisaje de energía libre –de gran dimensión- sobre distintos parámetros de orden, obteniendo representaciones unidimensionales. Éstas proporcionarán una visión globalmente correcta del sistema, sin embargo fallarán en la descripción adecuada de su mecanismo de desnaturalización. Por otra parte, emplearemos modelos de Markov para representar el paisaje de energía libre. Estos revelarán un espacio configuracional más complejo que el previsto anteriormente, con varios intermediarios que tendrán un papel relevante, especialmente para comprender el mecanismo de desplegamiento. En la segunda parte de la Tesis Doctoral, mostramos el estudio de un modelo de DNA al nivel del par de bases, el modelo de Peyrard-Bishop-Dauxois. En particular, extenderemos este modelo para introducir la interacción proteína-DNA. Proponiendo un método de análisis adecuado basado en modelos de Markov, podremos emplear este modelo para analizar secuencias de promotores, relacionando los estados que encontramos en la dinámica del sistema con sitios de unión proteína-DNA. Este modelo lo emplearemos para el análisis de nueve secuencias de promotores de una cianobacteria en particular. Nos centraremos en la identificación del sitio de inicio de la transcripción (TSS), región donde se une la RNA polimerasa para iniciar este proceso. En cada uno de los promotores, gracias al modelo somos capaces de identificar esta región como un estado de relevancia en la dinámica, con tendencia a que la partícula se una, formando una burbuja. Asimismo, gracias al método de análisis, cuantificamos estos estados, proporcionando magnitudes estadísticas que podemos relacionar con el conocimiento biológica acerca de estos promotores. La tercera parte está dedicada a los experimentos de molécula individual. Presentamos una colaboración experimental en la cual analizamos experimentos de disociación mecánica de dos complejos proteína:proteína. Nuestro objetivo es proporcionar una visión adecuada del paisaje de energía libre que gobierna este proceso. Para ello proponemos un método que permite recuperar la barrera de energía libre así como la energía libre de disociación para complejos biológicos. En particular, emplearemos este método para analizar experimentos de espetroscopía de fuerza, permitiendo obtener estas magnitudes y discutirlas en el contexto de la biología del sistema. Asimismo, proponemos un modelo físico para este tipo de experimentos, sobre el cual realizamos simulaciones numéricas que analizamos con el mismo método, con objeto de validarlo y respaldar su empleo

    Physics-based visual characterization of molecular interaction forces

    Get PDF
    Molecular simulations are used in many areas of biotechnology, such as drug design and enzyme engineering. Despite the development of automatic computational protocols, analysis of molecular interactions is still a major aspect where human comprehension and intuition are key to accelerate, analyze, and propose modifications to the molecule of interest. Most visualization algorithms help the users by providing an accurate depiction of the spatial arrangement: the atoms involved in inter-molecular contacts. There are few tools that provide visual information on the forces governing molecular docking. However, these tools, commonly restricted to close interaction between atoms, do not consider whole simulation paths, long-range distances and, importantly, do not provide visual cues for a quick and intuitive comprehension of the energy functions (modeling intermolecular interactions) involved. In this paper, we propose visualizations designed to enable the characterization of interaction forces by taking into account several relevant variables such as molecule-ligand distance and the energy function, which is essential to understand binding affinities. We put emphasis on mapping molecular docking paths obtained from Molecular Dynamics or Monte Carlo simulations, and provide time-dependent visualizations for different energy components and particle resolutions: atoms, groups or residues. The presented visualizations have the potential to support domain experts in a more efficient drug or enzyme design process.Peer ReviewedPostprint (author's final draft
    corecore