6,060 research outputs found

    Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows

    Get PDF
    In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids

    On the role of particles and radial basis functions in a finite element level set method for bubble dynamics

    Get PDF
    The aim of this presentation is to highlight the role that Particle-based simulations and Radial Basis Functions (RBFs) have played in the development of a computationally efficient, level-set, Finite Element method for the simulation of Newtonian and non-Newtonian interface flows. First, we introduce the mathemat- ical formulation and the interface-capturing technique used in the simulation of multiphase flows, underscoring the influence of marker particles on the enhanced definition of the interface. Then, we explore the effect of adding polymer parti- cles to the domain to perform Brownian Dynamics Simulations of polymer flows. Finally, we leverage RBFs to reconstruct, in an almost free-independent way the polymer stress tensor retrieved from the polymer particles. Numerical simulations of pure advection flows and bubble dynamics simulations of complex flows on two-dimensional configurations emphasize the improvements offered by this hybrid, Finite Element/RBF/Particle-based method

    A new three-dimensional mixed finite element for direct numerical simulation of compressible viscoelastic flows with moving free surfaces

    No full text
    The original publication is available at http://www.springer.comInternational audienceTA Mixed Finite Element (MFE) method for 3D non-steady flow of a viscoelastic compressible fluid is presented. It was used to compute polymer injection flows in a complex mold cavity, which involves moving free surfaces. The flow equations were derived from the Navier-Stokes incompressible equations, and we extended a mixed finite element method for incompressible viscous flow to account for compressibility (using the Tait model) and viscoelasticity (using a Pom-Pom like model). The flow solver uses tetrahedral elements and a mixed velocity/pressure/extra-stress/density formulation, where elastic terms are solved by decoupling our system and density variation is implicitly considered. A new DEVSS-like method is also introduced naturally from the MINI-element formulation. This method has the great advantage of a low memory requirement. At each time slab, once the velocity has been calculated, all evolution equations (free surface and material evolution) are solved by a space-time finite element method. This method is a generalization of the discontinuous Galerkin method, that shows a strong robustness with respect to both re-entrant corners and flow front singularities. Validation tests of the viscoelastic and free surface models implementation are shown, using literature benchmark examples. Results obtained in industrial 3D geometries underline the robustness and the efficiency of the proposed method

    On the design of optimal compliant walls for turbulence control

    Get PDF
    This paper employs the theoretical framework developed by Luhar et al. (J. Fluid Mech., 768, 415-441) to consider the design of compliant walls for turbulent skin friction reduction. Specifically, the effects of simple spring-damper walls are contrasted with the effects of more complex walls incorporating tension, stiffness and anisotropy. In addition, varying mass ratios are tested to provide insight into differences between aerodynamic and hydrodynamic applications. Despite the differing physical responses, all the walls tested exhibit some important common features. First, the effect of the walls (positive or negative) is greatest at conditions close to resonance, with sharp transitions in performance across the resonant frequency or phase speed. Second, compliant walls are predicted to have a more pronounced effect on slower-moving structures because such structures generally have larger wall-pressure signatures. Third, two-dimensional (spanwise constant) structures are particularly susceptible to further amplification. These features are consistent with many previous experiments and simulations, suggesting that mitigating the rise of such two-dimensional structures is essential to designing performance-improving walls. For instance, it is shown that further amplification of such large-scale two-dimensional structures explains why the optimal anisotropic walls identified by Fukagata et al. via DNS (J. Turb., 9, 1-17) only led to drag reduction in very small domains. The above observations are used to develop design and methodology guidelines for future research on compliant walls
    corecore