575 research outputs found

    Rapid optimization of stationary tokamak plasmas in RAPTOR: demonstration for the ITER hybrid scenario with neural network surrogate transport model QLKNN

    Get PDF
    This work presents a fast and robust method for optimizing the stationary radial distribution of temperature, density and parallel current density in a tokamak plasma and its application to first-principle-based modeling of the ITER hybrid scenario. A new solver is implemented in the RAPTOR transport code, enabling direct evaluation of the stationary solution to which the radial plasma profiles evolve. Coupled to a neural network emulation of the quasi-linear gyrokinetic QuaLiKiz transport model (QLKNN-hyper-10D), a first-principle-based estimate of the stationary state of the core plasma can be found at unprecedented computational speed (typically a few seconds on standard hardware). The stationary state solver is then embedded in a numerical optimization scheme, allowing the optimization of tokamak plasma scenarios in only a few minutes. The proposed method is applied to investigate the performance of ITER hybrid scenarios at different values of total plasma current, plasma density and pedestal height and for different power contributions in a heating mix consisting of electron cyclotron and neutral beam heating. Optimizing the radial distribution of electron cyclotron current drive (ECCD) deposition, the q profile is tailored to maximize the fusion gain Q, by maximizing the energy confinement predicted through the first-principles-based transport model, while satisfying q &gt; 1, avoiding sawtooth oscillations. It is found that optimal use of ECCD in ITER hybrid scenarios is to deposit power as close to the core as possible, while maintaining sufficient off-axis current drive to keep q above 1. Upper limits for the fusion gain Q are shown to be constrained either by minimum power requirements for the separatrix power flow to maintain H-mode or by minimum current drive requirements for q profile tailoring. Finally, it is shown that the ITER hybrid scenario operating window is significantly extended by an upgrade of the electron cyclotron power to 40 MW.</p

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Diffuse Optical Imaging with Ultrasound Priors and Deep Learning

    Get PDF
    Diffuse Optical Imaging (DOI) techniques are an ever growing field of research as they are noninvasive, compact, cost-effective and can furnish functional information about human tissues. Among others, they include techniques such as Tomography, which solves an inverse reconstruction problem in a tissue volume, and Mapping which only seeks to find values on a tissue surface. Limitations in reliability and resolution, due to the ill-posedness of the underlying inverse problems, have hindered the clinical uptake of this medical imaging modality. Multimodal imaging and Deep Learning present themselves as two promising solutions to further research in DOI. In relation to the first idea, we implement and assess here a set of methods for SOLUS, a combined Ultrasound (US) and Diffuse Optical Tomography (DOT) probe for breast cancer diagnosis. An ad hoc morphological prior is extracted from US B-mode images and utilised for the regularisation of the inverse problem in DOT. Combination of the latter in reconstruction with a linearised forward model for DOT is assessed on specifically designed dual phantoms. The same reconstruction approach with the incorporation of a spectral model has been assessed on meat phantoms for reconstruction of functional properties. A simulation study with realistic digital phantoms is presented for an assessment of a non-linear model in reconstruction for the quantification of optical properties of breast lesions. A set of machine learning tools is presented for diagnosis breast lesions based on the reconstructed optical properties. A preliminary clinical study with the SOLUS probe is presented. Finally, a specifically designed deep learning architecture for diffusion is applied to mapping on the brain cortex or Diffuse Optical Cortical Mapping (DOCM). An assessment of its performances is presented on simulated and experimental data
    • …
    corecore