75 research outputs found

    Numerical resolution of some BVP using Bernstein polynomials

    Full text link
    In this work we present a method, based on the use of Bernstein polynomials, for the numerical resolution of some boundary values problems. The computations have not need of particular approximations of derivatives, such as finite differences, or particular techniques, such as finite elements. Also, the method doesn't require the use of matrices, as in resolution of linear algebraic systems, nor the use of like-Newton algorithms, as in resolution of non linear sets of equations. An initial equation is resolved only once, then the method is based on iterated evaluations of appropriate polynomials.Comment: 7 pages, 3 figure

    AN EFFICIENT METHOD FOR SOLVING A DISCRETE ORTHOGONAL APPROXIMATION TO FRACTIONAL BOUNDARY VALUE PROBLEMS

    Get PDF
    In this thesis we developed a numerical method for solving a class of nonlinear fractional boundary value problems using the fractional order Legendre Tau-path following method. Theoretical and numerical analyses are presented. The numerical results showed that this method works properly and efficiently

    Multiscale computational homogenization: review and proposal of a new enhanced-first-order method

    Get PDF
    This is a copy of the author 's final draft version of an article published in the Archives of computational methods in engineering. The final publication is available at Springer via http://dx.doi.org/10.1007/s11831-016-9205-0The continuous increase of computational capacity has encouraged the extensive use of multiscale techniques to simulate the material behaviour on several fields of knowledge. In solid mechanics, the multiscale approaches which consider the macro-scale deformation gradient to obtain the homogenized material behaviour from the micro-scale are called first-order computational homogenization. Following this idea, the second-order FE2 methods incorporate high-order gradients to improve the simulation accuracy. However, to capture the full advantages of these high-order framework the classical boundary value problem (BVP) at the macro-scale must be upgraded to high-order level, which complicates their numerical solution. With the purpose of obtaining the best of both methods i.e. first-order and second-order, in this work an enhanced-first-order computational homogenization is presented. The proposed approach preserves a classical BVP at the macro-scale level but taking into account the high-order gradient of the macro-scale in the micro-scale solution. The developed numerical examples show how the proposed method obtains the expected stress distribution at the micro-scale for states of structural bending loads. Nevertheless, the macro-scale results achieved are the same than the ones obtained with a first-order framework because both approaches share the same macro-scale BVP.Peer ReviewedPostprint (author's final draft

    Exploiting compression in solving discretized linear systems

    Get PDF
    Solving systems of linear algebraic equations is crucial for many computational problems in science and engineering. Numerous techniques are available for solving such linear systems, including direct methods such as Gaussian elimination and iterative methods such as GMRES. This thesis proposes a method for exploiting compression while computing the solution to a given discretized system of linear algebraic equations and investigates both its overall effectiveness in practice and which factors determine its effectiveness. The method is based on computing an approximate solution in a reduced space, and thus we seek a basis in which the solution has a compressed representation and can consequently be computed more efficiently. We address three primary issues: (1) how to compute an approximate solution to the given discretized linear system using a given basis, (2) how to choose a basis that yields significant compression, and (3) how to detect when the basis is of sufficient dimension to provide a satisfactory approximation. While all three aspects have antecedents in previous ideas and methods, we combine, adapt, and extend them in a manner we believe to be novel for the purpose of solving discretized linear systems. We demonstrate that the resulting method can be competitive with, and sometimes outperform, current standard methods and is effective for efficiently solving linear systems resulting from the discretization of major classes of continuous problems

    Bernstein operational matrix of differentiation and collocation approach for a class of three-point singular BVPs: error estimate and convergence analysis

    Get PDF
    Singular boundary value problems (BVPs) have widespread applications in the field of engineering, chemical science, astrophysics and mathematical biology. Finding an approximate solution to a problem with both singularity and non-linearity is highly challenging. The goal of the current study is to establish a numerical approach for dealing with problems involving three-point boundary conditions. The Bernstein polynomials and collocation nodes of a domain are used for developing the proposed numerical approach. The straightforward mathematical formulation and easy to code, makes the proposed numerical method accessible and adaptable for the researchers working in the field of engineering and sciences. The priori error estimate and convergence analysis are carried out to affirm the viability of the proposed method. Various examples are considered and worked out in order to illustrate its applicability and effectiveness. The results demonstrate excellent accuracy and efficiency compared to the other existing methods

    Fast Isogeometric Boundary Element Method based on Independent Field Approximation

    Full text link
    An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries and a significant reduction of the right hand side of the system of equations for common boundary conditions. All these benefits are achieved without any loss of accuracy compared to conventional isogeometric formulations. The system matrices are approximated by means of hierarchical matrices to reduce the computational complexity for large scale analysis. For the required geometrical bisection of the domain, a strategy for the evaluation of bounding boxes containing the supports of NURBS basis functions is presented. The versatility and accuracy of the proposed methodology is demonstrated by convergence studies showing optimal rates and real world examples in two and three dimensions.Comment: 32 pages, 27 figure

    Fast, High-Order Accurate Integral Equation Methods and Application to PDE-Constrained Optimization

    Full text link
    Over the last several decades, the development of fast, high-order accurate, and robust integral equation methods for computational physics has gained increasing attention. Using integral equation formulation as a global statement in contrast to a local partial differential equation (PDE) formulation offers several unique advantages. For homogeneous PDEs, the boundary integral equation (BIE) formulation allows accurate handling of complex and moving geometries, and it only requires a mesh on the boundary, which is much easier to generate as a result of the dimension reduction. With the acceleration of fast algorithms like the Fast Multipole Method (FMM), the computational complexity can be reduced to O(N), where N is the number of degrees of freedom on the boundary. Using standard potential theory decomposition, inhomogeneous PDEs can be solved by evaluating a volume potential over the inhomogeneous source domain, followed by a solution of the homogeneous part. Despite the advantages of BIE methods in easy meshing, near-optimal efficiency, and well conditioning, the accurate evaluation of nearly singular integrals is a classical problem that needs to be addressed to enable simulations for practical applications. In the first half of this thesis, we develop a series of product integration schemes to solve this close evaluation problem. The use of differential forms provides a dimensional-agnostic way of integrating the nearly singular kernels against polynomial basis functions analytically. So the problem of singular integration gets reduced to a matter of source function approximation. In 2D, this procedure has been traditionally portrayed by building a connection to complex Cauchy integral, then supplemented by a complex monomial approximation. In 33D, the closed differential form requirement leads to the design of a new function approximation scheme based on harmonic polynomials and quaternion algebra. Under a similar framework, we develop a high-order accurate product integration scheme for evaluating singular and nearly singular volume integral equations (VIE) in complex domains using regular Cartesian grids discretization. A high-order accurate source term approximation scheme matching smooth volume integrals on irregular cut cells is developed, which requires no function extension. BIE methods have been widely used for studying Stokes flows, incompressible flows at low Reynolds' number, in both biological systems and microfluidics. In the second half of this thesis, we employ the BIE methods to simulate and optimize Stokes fluid-structure interactions. In 2D, a hybrid computational method is presented for simulating cilia-generated fluid mixing as well as the cilia-particle hydrodynamics. The method is based on a BIE formulation for confining geometries and rigid particles, and the method of regularized Stokeslets for the cilia. In 3D, we use the time-independent envelop model for arbitrary axisymmetric microswimmers to minimize the power loss while maintaining a target swimming speed. This is a quadratic optimization problem in terms of the slip velocity due to the linearity of Stokes flow. Under specified reduced volume constraint, we find prolate spheroids to be the most efficient micro-swimmer among various families of shapes we considered. We then derive an adjoint-based formulation for computing power loss sensitivities in terms of a time-dependent slip profile by introducing an auxiliary time-periodic function, and find that the optimal swimmer displays one or multiple traveling waves, reminiscent of the typical metachronal waves observed in ciliated microswimmers.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169695/1/hszhu_1.pd
    corecore