272 research outputs found

    Reconstruction of Support of a Measure From Its Moments

    Full text link
    In this paper, we address the problem of reconstruction of support of a measure from its moments. More precisely, given a finite subset of the moments of a measure, we develop a semidefinite program for approximating the support of measure using level sets of polynomials. To solve this problem, a sequence of convex relaxations is provided, whose optimal solution is shown to converge to the support of measure of interest. Moreover, the provided approach is modified to improve the results for uniform measures. Numerical examples are presented to illustrate the performance of the proposed approach.Comment: This has been submitted to the 53rd IEEE Conference on Decision and Contro

    An identity theorem for the Fourier transform of polytopes on rationally parameterisable hypersurfaces

    Full text link
    A set S\mathcal{S} of points in Rn\mathbb{R}^n is called a rationally parameterisable hypersurface if S={σ(t):t∈D}\mathcal{S}=\{\boldsymbol{\sigma}(\mathbf{t}): \mathbf{t} \in D\}, where σ:Rn−1→Rn\boldsymbol{\sigma}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^n is a vector function with domain DD and rational functions as components. A generalized nn-dimensional polytope in Rn\mathbb{R}^n is a union of a finite number of convex nn-dimensional polytopes in Rn\mathbb{R}^n. The Fourier transform of such a generalized polytope P\mathcal{P} in Rn\mathbb{R}^n is defined by FP(s)=∫Pe−is⋅x dxF_{\mathcal{P}}(\mathbf{s})=\int_{\mathcal{P}} e^{-i\mathbf{s}\cdot\mathbf{x}} \,\mathbf{dx}. We prove that FP1(σ(t))=FP2(σ(t)) ∀t∈OF_{\mathcal{P}_1}(\boldsymbol{\sigma}(\mathbf{t})) = F_{\mathcal{P}_2}(\boldsymbol{\sigma}(\mathbf{t}))\ \forall \mathbf{t} \in O implies P1=P2\mathcal{P}_1=\mathcal{P}_2 if OO is an open subset of DD satisfying some well-defined conditions. Moreover we show that this theorem can be applied to quadric hypersurfaces that do not contain a line, but at least two points, i.e., in particular to spheres.Comment: 20 page

    Phase retrieval for characteristic functions of convex bodies and reconstruction from covariograms

    Get PDF
    We propose strongly consistent algorithms for reconstructing the characteristic function 1_K of an unknown convex body K in R^n from possibly noisy measurements of the modulus of its Fourier transform \hat{1_K}. This represents a complete theoretical solution to the Phase Retrieval Problem for characteristic functions of convex bodies. The approach is via the closely related problem of reconstructing K from noisy measurements of its covariogram, the function giving the volume of the intersection of K with its translates. In the many known situations in which the covariogram determines a convex body, up to reflection in the origin and when the position of the body is fixed, our algorithms use O(k^n) noisy covariogram measurements to construct a convex polytope P_k that approximates K or its reflection -K in the origin. (By recent uniqueness results, this applies to all planar convex bodies, all three-dimensional convex polytopes, and all symmetric and most (in the sense of Baire category) arbitrary convex bodies in all dimensions.) Two methods are provided, and both are shown to be strongly consistent, in the sense that, almost surely, the minimum of the Hausdorff distance between P_k and K or -K tends to zero as k tends to infinity.Comment: Version accepted on the Journal of the American Mathematical Society. With respect to version 1 the noise model has been greatly extended and an appendix has been added, with a discussion of rates of convergence and implementation issues. 56 pages, 4 figure

    Konvexgeometrie

    Get PDF
    [no abstract available

    Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

    Get PDF
    In recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of online planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, we have seen a number of new approaches attempting to increase the accuracy of the dynamic formulation without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I describe the framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding while adapting to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without trading off their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint torques limits which are usually neglected at the planning stage. In this direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. For the sake of reachable workspace augmentation, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of the, so called, local/instantaneous actuation region and of the global actuation/feasible region. They both can be seen as different variants of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass while being able to carry its own body weight given its actuation capabilities. These areas can be intersected with the well known frictional support region, resulting in a 2D linear feasible region, thus providing an intuitive tool that enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains

    Fast space-variant elliptical filtering using box splines

    Get PDF
    The efficient realization of linear space-variant (non-convolution) filters is a challenging computational problem in image processing. In this paper, we demonstrate that it is possible to filter an image with a Gaussian-like elliptic window of varying size, elongation and orientation using a fixed number of computations per pixel. The associated algorithm, which is based on a family of smooth compactly supported piecewise polynomials, the radially-uniform box splines, is realized using pre-integration and local finite-differences. The radially-uniform box splines are constructed through the repeated convolution of a fixed number of box distributions, which have been suitably scaled and distributed radially in an uniform fashion. The attractive features of these box splines are their asymptotic behavior, their simple covariance structure, and their quasi-separability. They converge to Gaussians with the increase of their order, and are used to approximate anisotropic Gaussians of varying covariance simply by controlling the scales of the constituent box distributions. Based on the second feature, we develop a technique for continuously controlling the size, elongation and orientation of these Gaussian-like functions. Finally, the quasi-separable structure, along with a certain scaling property of box distributions, is used to efficiently realize the associated space-variant elliptical filtering, which requires O(1) computations per pixel irrespective of the shape and size of the filter.Comment: 12 figures; IEEE Transactions on Image Processing, vol. 19, 201
    • …
    corecore