24,555 research outputs found

    Limited-memory BFGS Systems with Diagonal Updates

    Get PDF
    In this paper, we investigate a formula to solve systems of the form (B + {\sigma}I)x = y, where B is a limited-memory BFGS quasi-Newton matrix and {\sigma} is a positive constant. These types of systems arise naturally in large-scale optimization such as trust-region methods as well as doubly-augmented Lagrangian methods. We show that provided a simple condition holds on B_0 and \sigma, the system (B + \sigma I)x = y can be solved via a recursion formula that requies only vector inner products. This formula has complexity M^2n, where M is the number of L-BFGS updates and n >> M is the dimension of x

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual β„“\ell1 linearly constrained Lagrangian (pdβ„“\ell1-LCL) method
    • …
    corecore