620,555 research outputs found

    Basic Methods for Computing Special Functions

    Get PDF
    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website

    Numerical Calculation of Bessel Functions

    Full text link
    A new computational procedure is offered to provide simple, accurate and flexible methods for using modern computers to give numerical evaluations of the various Bessel functions. The Trapezoidal Rule, applied to suitable integral representations, may become the method of choice for evaluation of the many Special Functions of mathematical physics.Comment: 10 page

    Stochastic B-series analysis of iterated Taylor methods

    Full text link
    For stochastic implicit Taylor methods that use an iterative scheme to compute their numerical solution, stochastic B--series and corresponding growth functions are constructed. From these, convergence results based on the order of the underlying Taylor method, the choice of the iteration method, the predictor and the number of iterations, for It\^o and Stratonovich SDEs, and for weak as well as strong convergence are derived. As special case, also the application of Taylor methods to ODEs is considered. The theory is supported by numerical experiments

    Geometric numerical integration of nonholonomic systems and optimal control problems

    Get PDF
    A geometric derivation of numerical integrators for nonholonomic systems and optimal control problems is obtained. It is based in the classical technique of generating functions adapted to the special features of nonholonomic systems and optimal control problems.Comment: 6 pages, 1 figure. Submitted to IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Sevilla 200

    Numerical calculation of Bessel, Hankel and Airy functions

    Full text link
    The numerical evaluation of an individual Bessel or Hankel function of large order and large argument is a notoriously problematic issue in physics. Recurrence relations are inefficient when an individual function of high order and argument is to be evaluated. The coefficients in the well-known uniform asymptotic expansions have a complex mathematical structure which involves Airy functions. For Bessel and Hankel functions, we present an adapted algorithm which relies on a combination of three methods: (i) numerical evaluation of Debye polynomials, (ii) calculation of Airy functions with special emphasis on their Stokes lines, and (iii) resummation of the entire uniform asymptotic expansion of the Bessel and Hankel functions by nonlinear sequence transformations. In general, for an evaluation of a special function, we advocate the use of nonlinear sequence transformations in order to bridge the gap between the asymptotic expansion for large argument and the Taylor expansion for small argument ("principle of asymptotic overlap"). This general principle needs to be strongly adapted to the current case, taking into account the complex phase of the argument. Combining the indicated techniques, we observe that it possible to extend the range of applicability of existing algorithms. Numerical examples and reference values are given.Comment: 18 pages; 7 figures; RevTe

    Numerical aspects of special functions

    Get PDF
    This paper describes methods that are important for the numerical evaluation of certain functions that frequently occur in applied mathematics, physics and mathematical statistics. This includes what we consider to be the basic methods, such as recurrence relations, series expansions (both convergent and asymptotic), and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. Examples will be given on the use of special functions in certain problems from mathematical physics and mathematical statistics (integrals and series with special functions)

    Numerical aspects of special functions

    Get PDF
    This paper describes methods that are important for the numerical evaluation of certain functions that frequently occur in applied mathematics, physics and mathematical statistics. This includes what we consider to be the basic methods, such as recurrence relations, series expansions (both convergent and asymptotic), and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. Examples will be given on the use of special functions in certain problems from mathematical physics and mathematical statistics (integrals and series with special functions)

    An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments

    Full text link
    We describe a method for the rapid numerical evaluation of the Bessel functions of the first and second kinds of nonnegative real orders and positive arguments. Our algorithm makes use of the well-known observation that although the Bessel functions themselves are expensive to represent via piecewise polynomial expansions, the logarithms of certain solutions of Bessel's equation are not. We exploit this observation by numerically precomputing the logarithms of carefully chosen Bessel functions and representing them with piecewise bivariate Chebyshev expansions. Our scheme is able to evaluate Bessel functions of orders between 00 and 1\sep,000\sep,000\sep,000 at essentially any positive real argument. In that regime, it is competitive with existing methods for the rapid evaluation of Bessel functions and has several advantages over them. First, our approach is quite general and can be readily applied to many other special functions which satisfy second order ordinary differential equations. Second, by calculating the logarithms of the Bessel functions rather than the Bessel functions themselves, we avoid many issues which arise from numerical overflow and underflow. Third, in the oscillatory regime, our algorithm calculates the values of a nonoscillatory phase function for Bessel's differential equation and its derivative. These quantities are useful for computing the zeros of Bessel functions, as well as for rapidly applying the Fourier-Bessel transform. The results of extensive numerical experiments demonstrating the efficacy of our algorithm are presented. A Fortran package which includes our code for evaluating the Bessel functions as well as our code for all of the numerical experiments described here is publically available

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems
    corecore