300 research outputs found

    A nonlinear dynamics approach to Bogoliubov excitations of Bose-Einstein condensates

    Full text link
    We assume the macroscopic wave function of a Bose-Einstein condensate as a superposition of Gaussian wave packets, with time-dependent complex width parameters, insert it into the mean-field energy functional corresponding to the Gross-Pitaevskii equation (GPE) and apply the time-dependent variational principle. In this way the GPE is mapped onto a system of coupled equations of motion for the complex width parameters, which can be analyzed using the methods of nonlinear dynamics. We perform a stability analysis of the fixed points of the nonlinear system, and demonstrate that the eigenvalues of the Jacobian reproduce the low-lying quantum mechanical Bogoliubov excitation spectrum of a condensate in an axisymmetric trap.Comment: 7 pages, 3 figures, Proceedings of the "8th International Summer School/Conference Let's Face Chaos Through Nonlinear Dynamics", CAMTP, University of Maribor, Slovenia, 26 June - 10 July 201

    Multimode analysis of non-classical correlations in double well Bose-Einstein condensates

    Full text link
    The observation of non-classical correlations arising in interacting two to size weakly coupled Bose-Einstein condensates was recently reported by Esteve et al. [Nature 455, 1216 (2008)]. In order to observe fluctuations below the standard quantum limit, they utilized adiabatic passage to reduce the thermal noise to below that of thermal equilibrium at the minimum realizable temperature. We present a theoretical analysis that takes into account the spatial degrees of freedom of the system, allowing us to calculate the expected correlations at finite temperature in the system, and to verify the hypothesis of adiabatic passage by comparing the dynamics to the idealized model.Comment: 12 pages, 7 figure

    Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates

    Full text link
    I study the evolution of mean field and linear quantum fluctuations in a toroidal Bose-Einstein condensate, whose interaction strength is quenched from a finite (repulsive) value to zero. The azimuthal equal-time density-density correlation function is calculated and shows temporal oscillations with twice the (final) excitation frequencies after the transition. These oscillations are a direct consequence of positive and negative frequency mixing during non-adiabatic evolution. I will argue that a time-resolved measurement of the equal-time density correlator might be used to calculate the moduli of the Bogoliubov coefficients and thus the amount of squeezing imposed on a mode, i.e., the number of atoms excited out of the condensate.Comment: 18 pages, IOP styl
    corecore