6,346 research outputs found

    When the mean is not enough: Calculating fixation time distributions in birth-death processes

    Full text link
    Studies of fixation dynamics in Markov processes predominantly focus on the mean time to absorption. This may be inadequate if the distribution is broad and skewed. We compute the distribution of fixation times in one-step birth-death processes with two absorbing states. These are expressed in terms of the spectrum of the process, and we provide different representations as forward-only processes in eigenspace. These allow efficient sampling of fixation time distributions. As an application we study evolutionary game dynamics, where invading mutants can reach fixation or go extinct. We also highlight the median fixation time as a possible analog of mixing times in systems with small mutation rates and no absorbing states, whereas the mean fixation time has no such interpretation.Comment: Published in PRE. 14 pages, 6 figure

    Localization transition, Lifschitz tails and rare-region effects in network models

    Get PDF
    Effects of heterogeneity in the suspected-infected-susceptible model on networks are investigated using quenched mean-field theory. The emergence of localization is described by the distributions of the inverse participation ratio and compared with the rare-region effects appearing in simulations and in the Lifschitz tails. The latter, in the linear approximation, is related to the spectral density of the Laplacian matrix and to the time dependent order parameter. I show that these approximations indicate correctly Griffiths Phases both on regular one-dimensional lattices and on small world networks exhibiting purely topological disorder. I discuss the localization transition that occurs on scale-free networks at γ=3\gamma=3 degree exponent.Comment: 9 pages, 9 figures, accepted version in PR

    Non-diagonalizable and non-divergent susceptibility tensor in the Hamiltonian mean-field model with asymmetric momentum distributions

    Get PDF
    We investigate response to an external magnetic field in the Hamiltonian mean-field model, which is a paradigmatic toy model of a ferromagnetic body and consists of plane rotators like the XY spins. Due to long-range interactions, the external field drives the system to a long-lasting quasistationary state before reaching thermal equilibrium, and the susceptibility tensor obtained in the quasista- tionary state is predicted by a linear response theory based on the Vlasov equation. For spatially homogeneous stable states, whose momentum distributions are asymmetric with zero-means, the theory reveals that the susceptibility tensor for an asymptotically constant external field is neither symmetric nor diagonalizable, and the predicted states are not stationary accordingly. Moreover, the tensor has no divergence even at the stability threshold. These theoretical findings are confirmed by direct numerical simulations of the Vlasov equation for the skew-normal distribution functions.Comment: 10 pages, 8 figure
    corecore