15,582 research outputs found

    Singular Continuation: Generating Piece-wise Linear Approximations to Pareto Sets via Global Analysis

    Full text link
    We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, New York, 1973, pp. 531-544). The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set, and can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable set-wise sense is proven and tested in a number of numerical examples.Comment: 29 pages, 12 figure

    Efficient Numerical Methods to Solve Sparse Linear Equations with Application to PageRank

    Full text link
    In this paper, we propose three methods to solve the PageRank problem for the transition matrices with both row and column sparsity. Our methods reduce the PageRank problem to the convex optimization problem over the simplex. The first algorithm is based on the gradient descent in L1 norm instead of the Euclidean one. The second algorithm extends the Frank-Wolfe to support sparse gradient updates. The third algorithm stands for the mirror descent algorithm with a randomized projection. We proof converges rates for these methods for sparse problems as well as numerical experiments support their effectiveness.Comment: 26 page

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    Supervised learning with hybrid global optimisation methods

    Get PDF

    A simplex-like search method for bi-objective optimization

    Get PDF
    We describe a new algorithm for bi-objective optimization, similar to the Nelder Mead simplex algorithm, widely used for single objective optimization. For diferentiable bi-objective functions on a continuous search space, internal Pareto optima occur where the two gradient vectors point in opposite directions. So such optima may be located by minimizing the cosine of the angle between these vectors. This requires a complex rather than a simplex, so we term the technique the \cosine seeking complex". An extra beneft of this approach is that a successful search identifes the direction of the effcient curve of Pareto points, expediting further searches. Results are presented for some standard test functions. The method presented is quite complicated and space considerations here preclude complete details. We hope to publish a fuller description in another place
    • …
    corecore