6,179 research outputs found

    Hybrid Newton-type method for a class of semismooth equations

    Get PDF
    In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite-difference Newton method to an inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We report also several numerical results obtained applying the method to suitable reformulations of well-known nonlinear complementarity problem

    Derivation of equivalent linear properties of Bouc-Wen hysteretic systems for seismic response spectrum analysis via statistical linearization

    Get PDF
    A newly proposed statistical linearization based formulation is used to derive effective linear properties (ELPs), namely damping ratio and natural frequency, for stochastically excited hysteretic oscillatorsinvolving the Bouc-Wen force-deformation phenomenological model. This is achieved by first using a frequency domain statistical linearization step to substitute a Bouc-Wen oscillator by a third order linear system. Next, this third order linear system is reduced to a second order linear oscillator characterized by a set of ELPs by enforcing equality of certain response statistics of the two linear systems. The proposed formulation is utilized in conjunction with quasi-stationary stochastic processes compatible with elastic response spectra commonly used to represent the input seismic action in earthquake resistant design of structures. Then, the derived ELPs are used to estimate the peak response of Bouc-Wen hysteretic oscillators without numerical integration of the nonlinear equation of motion; this is done in the context of linear response spectrum-based dynamic analysis. Numerical results pertaining to the elastic response spectrum of the current European aseismic code provisions (EC8) are presented to demonstrate the usefulness of the proposed approach. These results are supported by pertinent Monte Carlo simulations involving an ensemble of non-stationary EC8 spectrum compatible accelerograms. The proposed approach can hopefully be an effective tool in the preliminary aseismic design stages of yielding structures and structural members commonly represented by the Bouc-Wen hysteretic model within either a force-based or a displacement-based context

    Modeling, Simulating, and Parameter Fitting of Biochemical Kinetic Experiments

    Full text link
    In many chemical and biological applications, systems of differential equations containing unknown parameters are used to explain empirical observations and experimental data. The DEs are typically nonlinear and difficult to analyze, requiring numerical methods to approximate the solutions. Compounding this difficulty are the unknown parameters in the DE system, which must be given specific numerical values in order for simulations to be run. Estrogen receptor protein dimerization is used as an example to demonstrate model construction, reduction, simulation, and parameter estimation. Mathematical, computational, and statistical methods are applied to empirical data to deduce kinetic parameter estimates and guide decisions regarding future experiments and modeling. The process demonstrated serves as a pedagogical example of quantitative methods being used to extract parameter values from biochemical data models.Comment: 23 pages, 9 figures, to be published in SIAM Revie

    Iterative procedures for space shuttle main engine performance models

    Get PDF
    Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented

    Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming

    Full text link
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. In this paper, a novel application of biologically inspired computing paradigm is presented for solving initial value problem (IVP) of electric circuits based on nonlinear RL model by exploiting the competency of accurate modeling with feed forward artificial neural network (FF-ANN), global search efficacy of genetic algorithms (GA) and rapid local search with sequential quadratic programming (SQP). The fitness function for IVP of associated nonlinear RL circuit is developed by exploiting the approximation theory in mean squared error sense using an approximate FF-ANN model. Training of the networks is conducted by integrated computational heuristic based on GA-aided with SQP, i.e., GA-SQP. The designed methodology is evaluated to variants of nonlinear RL systems based on both AC and DC excitations for number of scenarios with different voltages, resistances and inductance parameters. The comparative studies of the proposed results with Adam’s numerical solutions in terms of various performance measures verify the accuracy of the scheme. Results of statistics based on Monte-Carlo simulations validate the accuracy, convergence, stability and robustness of the designed scheme for solving problem in nonlinear circuit theory

    XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    Full text link
    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code.Comment: 9 pages, 5 figure

    Afivo: a framework for quadtree/octree AMR with shared-memory parallelization and geometric multigrid methods

    Get PDF
    Afivo is a framework for simulations with adaptive mesh refinement (AMR) on quadtree (2D) and octree (3D) grids. The framework comes with a geometric multigrid solver, shared-memory (OpenMP) parallelism and it supports output in Silo and VTK file formats. Afivo can be used to efficiently simulate AMR problems with up to about 10810^{8} unknowns on desktops, workstations or single compute nodes. For larger problems, existing distributed-memory frameworks are better suited. The framework has no built-in functionality for specific physics applications, so users have to implement their own numerical methods. The included multigrid solver can be used to efficiently solve elliptic partial differential equations such as Poisson's equation. Afivo's design was kept simple, which in combination with the shared-memory parallelism facilitates modification and experimentation with AMR algorithms. The framework was already used to perform 3D simulations of streamer discharges, which required tens of millions of cells

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore