1,751 research outputs found

    A variational approach for continuous supply chain networks

    Get PDF
    We consider a continuous supply chain network consisting of buffering queues and processors first proposed by [D. Armbruster, P. Degond, and C. Ringhofer, SIAM J. Appl. Math., 66 (2006), pp. 896–920] and subsequently analyzed by [D. Armbruster, P. Degond, and C. Ringhofer, Bull. Inst. Math. Acad. Sin. (N.S.), 2 (2007), pp. 433–460] and [D. Armbruster, C. De Beer, M. Fre- itag, T. Jagalski, and C. Ringhofer, Phys. A, 363 (2006), pp. 104–114]. A model was proposed for such a network by [S. G ̈ottlich, M. Herty, and A. Klar, Commun. Math. Sci., 3 (2005), pp. 545–559] using a system of coupling ordinary differential equations and partial differential equations. In this article, we propose an alternative approach based on a variational method to formulate the network dynamics. We also derive, based on the variational method, a computational algorithm that guarantees numerical stability, allows for rigorous error estimates, and facilitates efficient computations. A class of network flow optimization problems are formulated as mixed integer programs (MIPs). The proposed numerical algorithm and the corresponding MIP are compared theoretically and numerically with existing ones [A. Fu ̈genschuh, S. Go ̈ttlich, M. Herty, A. Klar, and A. Martin, SIAM J. Sci. Comput., 30 (2008), pp. 1490–1507; S. Go ̈ttlich, M. Herty, and A. Klar, Commun. Math. Sci., 3 (2005), pp. 545–559], which demonstrates the modeling and computational advantages of the variational approach

    A discrete Hughes' model for pedestrian flow on graphs

    Get PDF
    In this paper, we introduce a discrete time-finite state model for pedestrian flow on a graph in the spirit of the Hughes dynamic continuum model. The pedestrians, represented by a density function, move on the graph choosing a route to minimize the instantaneous travel cost to the destination. The density is governed by a conservation law while the minimization principle is described by a graph eikonal equation. We show that the model is well posed and we implement some numerical examples to demonstrate the validity of the proposed model

    A numerical method for Mean Field Games on networks

    Get PDF
    We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out
    • …
    corecore