6,686 research outputs found

    3D weak lensing with spin wavelets on the ball

    Get PDF
    We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing of cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real or harmonic space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.Comment: 24 pages, 4 figures, version accepted for publication in PR

    Asymptotic expansions and fast computation of oscillatory Hilbert transforms

    Full text link
    In this paper, we study the asymptotics and fast computation of the one-sided oscillatory Hilbert transforms of the form H+(f(t)eiωt)(x)=int0eiωtf(t)txdt,ω>0,x0,H^{+}(f(t)e^{i\omega t})(x)=-int_{0}^{\infty}e^{i\omega t}\frac{f(t)}{t-x}dt,\qquad \omega>0,\qquad x\geq 0, where the bar indicates the Cauchy principal value and ff is a real-valued function with analytic continuation in the first quadrant, except possibly a branch point of algebraic type at the origin. When x=0x=0, the integral is interpreted as a Hadamard finite-part integral, provided it is divergent. Asymptotic expansions in inverse powers of ω\omega are derived for each fixed x0x\geq 0, which clarify the large ω\omega behavior of this transform. We then present efficient and affordable approaches for numerical evaluation of such oscillatory transforms. Depending on the position of xx, we classify our discussion into three regimes, namely, x=O(1)x=\mathcal{O}(1) or x1x\gg1, 0<x10<x\ll 1 and x=0x=0. Numerical experiments show that the convergence of the proposed methods greatly improve when the frequency ω\omega increases. Some extensions to oscillatory Hilbert transforms with Bessel oscillators are briefly discussed as well.Comment: 32 pages, 6 figures, 4 table

    Sonoluminescence as a QED vacuum effect. II: Finite Volume Effects

    Get PDF
    In a companion paper [quant-ph/9904013] we have investigated several variations of Schwinger's proposed mechanism for sonoluminescence. We demonstrated that any realistic version of Schwinger's mechanism must depend on extremely rapid (femtosecond) changes in refractive index, and discussed ways in which this might be physically plausible. To keep that discussion tractable, the technical computations in that paper were limited to the case of a homogeneous dielectric medium. In this paper we investigate the additional complications introduced by finite-volume effects. The basic physical scenario remains the same, but we now deal with finite spherical bubbles, and so must decompose the electromagnetic field into Spherical Harmonics and Bessel functions. We demonstrate how to set up the formalism for calculating Bogolubov coefficients in the sudden approximation, and show that we qualitatively retain the results previously obtained using the homogeneous-dielectric (infinite volume) approximation.Comment: 23 pages, LaTeX 209, ReV-TeX 3.2, five figure

    Rotation method for accelerating multiple-spherical Bessel function integrals against a numerical source function

    Get PDF
    A common problem in cosmology is to integrate the product of two or more spherical Bessel functions (sBFs) with different configuration-space arguments against the power spectrum or its square, weighted by powers of wavenumber. Naively computing them scales as Ngp+1N_{\rm g}^{p+1} with pp the number of configuration space arguments and NgN_{\rm g} the grid size, and they cannot be done with Fast Fourier Transforms (FFTs). Here we show that by rewriting the sBFs as sums of products of sine and cosine and then using the product to sum identities, these integrals can then be performed using 1-D FFTs with NglogNgN_{\rm g} \log N_{\rm g} scaling. This "rotation" method has the potential to accelerate significantly a number of calculations in cosmology, such as perturbation theory predictions of loop integrals, higher order correlation functions, and analytic templates for correlation function covariance matrices. We implement this approach numerically both in a free-standing, publicly-available \textsc{Python} code and within the larger, publicly-available package \texttt{mcfit}. The rotation method evaluated with direct integrations already offers a factor of 6-10×\times speed-up over the naive approach in our test cases. Using FFTs, which the rotation method enables, then further improves this to a speed-up of \sim10003000×1000-3000\times over the naive approach. The rotation method should be useful in light of upcoming large datasets such as DESI or LSST. In analysing these datasets recomputation of these integrals a substantial number of times, for instance to update perturbation theory predictions or covariance matrices as the input linear power spectrum is changed, will be one piece in a Monte Carlo Markov Chain cosmological parameter search: thus the overall savings from our method should be significant

    Theoretical analysis of the electrical aspects of the basic electro-impulse problem in aircraft de-icing applications

    Get PDF
    A method of modelling a system consisting of a cylindrical coil with its axis perpendicular to a metal plate of finite thickness, and a simple electrical circuit for producing a transient current in the coil, is discussed in the context of using such a system for de-icing aircraft surfaces. A transmission line model of the coil and metal plate is developed as the heart of the system model. It is shown that this transmission model is central to calculation of the coil impedance, the coil current, the magnetic fields established on the surfaces of the metal plate, and the resultant total force between the coil and the plate. FORTRAN algorithms were developed for numerical calculation of each of these quantities, and the algorithms were applied to an experimental prototype system in which these quantities had been measured. Good agreement is seen to exist between the predicted and measured results
    corecore