6 research outputs found

    Decomposition Method for Kdv Boussinesq and Coupled Kdv Boussinesq Equations

    Get PDF
    This paper obtains the solitary wave solutions of two different forms of Boussinesq equations that model the study of shallow water waves in lakes and ocean beaches. The decomposition method using He’s polynomials is applied to solve the governing equations. The travelling wave hypothesis is also utilized to solve the generalized case of coupled Boussinesq equations, and, thus, an exact soliton solution is obtained. The results are also supported by numerical simulations. Keywords: Decomposition Method, He’s polynomials, cubic Boussinesq equation, Coupled Boussinesq equation

    Solutions to the complex Korteweg-de Vries equation: Blow-up solutions and non-singular solutions

    Full text link
    In the paper two kinds of solutions are derived for the complex Korteweg-de Vries equation, including blow-up solutions and non-singular solutions. We derive blow-up solutions from known 1-soliton solution and a double-pole solution. There is a complex Miura transformation between the complex Korteweg-de Vries equation and a modified Korteweg-de Vries equation. Using the transformation, solitons, breathers and rational solutions to the complex Korteweg-de Vries equation are obtained from those of the modified Korteweg-de Vries equation. Dynamics of the obtained solutions are illustrated.Comment: 12 figure

    Water Wave Solutions of the Coupled System Zakharov-Kuznetsov and Generalized Coupled KdV Equations

    Get PDF
    An analytic study was conducted on coupled partial differential equations. We formally derived new solitary wave solutions of generalized coupled system of Zakharov-Kuznetsov (ZK) and KdV equations by using modified extended tanh method. The traveling wave solutions for each generalized coupled system of ZK and KdV equations are shown in form of periodic, dark, and bright solitary wave solutions. The structures of the obtained solutions are distinct and stable

    Exp-function method using modified Riemann-Liouville derivative for Burger's equations of fractional-order

    Get PDF
    This paper shows the combination of an efficient transformation and Exp-function method, to construct generalized solitary wave solutions of the nonlinear Burger's equations of fractional-order. Computational work and subsequent numerical results re-confirm the efficiency of the proposed algorithm. It is observed that the suggested scheme is highly reliable and may be extended to other nonlinear differential equations of fractional order

    Nonlinear wave patterns in the complex KdV and nonlinear Schrodinger equations

    Get PDF
    This thesis is on the theory of nonlinear waves in physics. To begin with, we develop from first principles the theory of the complex Korteweg-de Vries (KdV) equation as an equation for the complex velocity of a weakly nonlinear wave in a shallow, ideal fluid. We show that this is completely consistent with the well-known theory of the real KdV equation as a special case, but has the advantage of directly giving complete information about the motion of all particles within the fluid. We show that the complex KdV equation also has conserved quantities which are completely consistent with the physical interpretation of the real KdV equation. When a periodic wave solution to the real KdV equation is expanded in the quasi-monochromatic approximation, it is known that the amplitude of the wave envelope is described by the nonlinear Schrodinger (NLS) equation. However, in the complex KdV equation, we show that the fundamental modes of the velocity are described by the split NLS equations, themselves a special case of the Ablowitz-Kaup-Newell-Segur system. This is a directly physical interpretation of the split NLS equations, which were primarily introduced as only a mathematical construct emerging from the Zakharov-Shabat equations. We also discuss an empirically obtained symmetry of the rational solutions to the KdV equations, which seems to have been unnoticed until now. Solutions which can be written in terms of Wronskian determinants are well-known; however, we show that these are actually part of a more general family of rational solutions. We show that a linear combination of the Wronskians of orders nn and n+2n+2 generates a new, multi-peak rational solution to the KdV equation. We next move on to the integrable extensions of the NLS equation. These incorporate higher order nonlinear and dispersive terms in such a way that the system keeps the same conserved quantities, and is thus completely integrable. We obtain the general solution of the doubly-periodic solutions of the class I extension of the NLS equation, and discuss several special cases. These are the most general one-parameter first order solutions of the (class I) extended NLS equation. Building on this, we also discuss second order solutions to the extended NLS equation. We obtain the general 2-breather solutions, and discuss several special cases; among them, semirational breathers, the degenerate breather solution, the second-order rogue wave, and the rogue wave triplet solution. We also discuss the breather to soliton conversion, which is a solution which does not exist in the basic NLS equation where only the lowest order dispersive and nonlinear terms are present. Finally, we discuss a few possibilities for future research based on the work done in this thesis

    Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application

    Get PDF
    This book is a collection of the research articles and review article, published in special issue "Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application"
    corecore