1,248 research outputs found

    Design and assembly of a magneto-inertial wearable device for ecological behavioural analysis of infants

    Get PDF
    There are recent evidence which show how brain development is strictly linked to the action. Movements shape and are, in turn, shaped by cortical and sub-cortical areas. In particular spontaneous movements of newborn infants matter for developing the capability of generating voluntary skill movements. Therefore studying spontaneous infants’ movements can be useful to understand the main developmental milestones achieved by humans from birth onward. This work focuses on the design and development of a mechatronic wearable device for ecological movement analysis called WAMS (Wrist and Ankle Movement Sensor). The design and assembling of the device is presented, as well as the communication protocol and the synchronization with other marker-based optical movement analysis systems

    Doctor of Philosophy

    Get PDF
    dissertationMotion capture has applications in many fields. A need has arisen for motion capture systems that are low-cost, mobile, and intuitive. An attitude heading reference system (AHRS) calculates the global orientation of a rigid body by synthesizing the output from an array of sensors. A complete motion capture system utilizing gyroscopes, accelerometers, and magnetometers attached to the main body segments of a human is proposed. This is accomplished by providind a low-cost calibration procedure for micro electro-mechanical system (MEMS) gyroscopes, accelerometers, and magnetometers in order to create a custom AHRS unit. The accuracy of reproducing global orientations using these AHRS units is analyzed for individual modules as well as redundant groups of AHRS nodes for increased accuracy. In order to make the system intuitive, a localization procedure for finding the locations of all AHRS units attached to the body is proposed. Sensors were successfully calibrated to an accuracy sufficient for AHRS development. The accuracy of the AHRS units was verified and led to a functioning motion capture system. The localization procedure was verified with volunteer subjects and successfully finds the location of all attached AHRS units

    A user interactive calibration program for an object tracking system using a triaxial accelerometer

    Get PDF
    A major method in object tracking systems and other inertial measurement devices resolves around the use of one, two, or three axis accelerometers. A leader in the field such devices is Microstrain Incorporated. They have developed a three axis accelerometer that uses a three axis magnetic sensor array to compute the pitch, roll, and yaw of a compact inertial measurement unit. In researching such devices, it became apparent that data collected using such units is extremely sensitive both to local magnetic fields and human interactions with the devices. It is therefore of great importance to ensure the device or devices are properly calibrated. In the construction of an effective calibration program, it is necessary to measure and zero out even minor discrepancies, as even small misalignments have deleterious effects on device performance

    Magnetometer calibration using inertial sensors

    Full text link
    In this work we present a practical algorithm for calibrating a magnetometer for the presence of magnetic disturbances and for magnetometer sensor errors. To allow for combining the magnetometer measurements with inertial measurements for orientation estimation, the algorithm also corrects for misalignment between the magnetometer and the inertial sensor axes. The calibration algorithm is formulated as the solution to a maximum likelihood problem and the computations are performed offline. The algorithm is shown to give good results using data from two different commercially available sensor units. Using the calibrated magnetometer measurements in combination with the inertial sensors to determine the sensor's orientation is shown to lead to significantly improved heading estimates.Comment: 19 pages, 8 figure

    Iterative calibration method for inertial and magnetic sensors

    No full text
    International audienceWe address the problem of three-axis sensor calibration. Our focus is on magnetometers. Usual errors (misalignment, non-orthogonality, scale factors, biases) are accounted for. We consider a method where no specific calibration hardware is required. We solely use the fact that the norm of the sensed field must remain constant irrespective of the sensors orientation. The proposed algorithm is iterative. Its convergence is studied. Experiments conducted with MEMS sensors (magnetometers) stress the relevance of the approach

    Proceedings of an ESA-NASA Workshop on a Joint Solid Earth Program

    Get PDF
    The NASA geodynamics program; spaceborne magnetometry; spaceborne gravity gradiometry (characterizing the data type); terrestrial gravity data and comparisons with satellite data; GRADIO three-axis electrostatic accelerometers; gradiometer accommodation on board a drag-free satellite; gradiometer mission spectral analysis and simulation studies; and an opto-electronic accelerometer system were discussed

    Quaternionic Attitude Estimation with Inertial Measuring Unit for Robotic and Human Body Motion Tracking using Sequential Monte Carlo Methods with Hyper-Dimensional Spherical Distributions

    Get PDF
    This dissertation examined the inertial tracking technology for robotics and human tracking applications. This is a multi-discipline research that builds on the embedded system engineering, Bayesian estimation theory, software engineering, directional statistics, and biomedical engineering. A discussion of the orientation tracking representations and fundamentals of attitude estimation are presented briefly to outline the some of the issues in each approach. In addition, a discussion regarding to inertial tracking sensors gives an insight to the basic science and limitations in each of the sensing components. An initial experiment was conducted with existing inertial tracker to study the feasibility of using this technology in human motion tracking. Several areas of improvement were made based on the results and analyses from the experiment. As the performance of the system relies on multiple factors from different disciplines, the only viable solution is to optimize the performance in each area. Hence, a top-down approach was used in developing this system. The implementations of the new generation of hardware system design and firmware structure are presented in this dissertation. The calibration of the system, which is one of the most important factors to minimize the estimation error to the system, is also discussed in details. A practical approach using sequential Monte Carlo method with hyper-dimensional statistical geometry is taken to develop the algorithm for recursive estimation with quaternions. An analysis conducted from a simulation study provides insights to the capability of the new algorithms. An extensive testing and experiments was conducted with robotic manipulator and free hand human motion to demonstrate the improvements with the new generation of inertial tracker and the accuracy and stability of the algorithm. In addition, the tracking unit is used to demonstrate the potential in multiple biomedical applications including kinematics tracking and diagnosis instrumentation. The inertial tracking technologies presented in this dissertation is aimed to use specifically for human motion tracking. The goal is to integrate this technology into the next generation of medical diagnostic system

    Use of accelerometers in the control of practical prosthetic arms

    Get PDF
    Accelerometers can be used to augment the control of powered prosthetic arms. They can detect the orientation of the joint and limb and the controller can correct for the amount of torque required to move the limb. They can also be used to create a platform, with a fixed orientation relative to gravity for the object held in the hand. This paper describes three applications for this technology, in a powered wrist and powered arm. By adding sensors to the arm making these data available to the controller, the input from the user can be made simpler. The operator will not need to correct for changes in orientation of their body as they move. Two examples of the correction for orientation against gravity are described and an example of the system designed for use by a patient. The controller for all examples is a distributed set of microcontrollers, one node for each joint, linked with the Control Area Network (CAN) bus. The clinical arm uses a version of the Southampton Adaptive Manipulation Scheme to control the arm and hand. In this control form the user gives simpler input commands and leaves the detailed control of the arm to the controller

    Doctor of Philosophy

    Get PDF
    dissertationThe need for position and orientation information in a wide variety of applications has led to the development of equally varied methods for providing it. Amongst the alternatives, inertial navigation is a solution that o ffers self-contained operation and provides angular rate, orientation, acceleration, velocity, and position information. Until recently, the size, cost, and weight of inertial sensors has limited their use to vehicles with relatively large payload capacities and instrumentation budgets. However, the development of microelectromechanical system (MEMS) inertial sensors now o ers the possibility of using inertial measurement in smaller, even human-scale, applications. Though much progress has been made toward this goal, there are still many obstacles. While operating independently from any outside reference, inertial measurement su ers from unbounded errors that grow at rates up to cubic in time. Since the reduced size and cost of these new miniaturized sensors comes at the expense of accuracy and stability, the problem of error accumulation becomes more acute. Nevertheless, researchers have demonstrated that useful results can be obtained in real-world applications. The research presented herein provides several contributions to the development of human-scale inertial navigation. A calibration technique allowing complex sensor models to be identified using inexpensive hardware and linear solution techniques has been developed. This is shown to provide significant improvements in the accuracy of the calibrated outputs from MEMS inertial sensors. Error correction algorithms based on easily identifiable characteristics of the sensor outputs have also been developed. These are demonstrated in both one- and three-dimensional navigation. The results show significant improvements in the levels of accuracy that can be obtained using these inexpensive sensors. The algorithms also eliminate empirical, application-specific simplifications and heuristics, upon which many existing techniques have depended, and make inertial navigation a more viable solution for tracking the motion around us
    • …
    corecore