5,423 research outputs found

    Wall Orientation and Shear Stress in the Lattice Boltzmann Model

    Full text link
    The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near the staircase boundary. Finally, we calculate the wall shear stress in the human abdominal aorta in steady conditions using our method and compare the results with a standard finite volume solver and experimental data available in the literature. Applications of our ideas in a simplified protocol for data preprocessing in medical applications are discussed.Comment: 9 pages, 11 figure

    Guaranteed passive parameterized macromodeling by using Sylvester state-space realizations

    Get PDF
    A novel state-space realization for parameterized macromodeling is proposed in this paper. A judicious choice of the state-space realization is required in order to account for the assumed smoothness of the state-space matrices with respect to the design parameters. This technique is used in combination with suitable interpolation schemes to interpolate a set of state-space matrices, and hence the poles and residues indirectly, in order to build accurate parameterized macromodels. The key points of the novel state-space realizations are the choice of a proper pivot matrix and a well-conditioned solution of a Sylvester equation. Stability and passivity are guaranteed by construction over the design space of interest. Pertinent numerical examples validate the proposed Sylvester realization for parameterized macromodeling

    CSM Testbed Development and Large-Scale Structural Applications

    Get PDF
    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized

    The role of learning on industrial simulation design and analysis

    Full text link
    The capability of modeling real-world system operations has turned simulation into an indispensable problemsolving methodology for business system design and analysis. Today, simulation supports decisions ranging from sourcing to operations to finance, starting at the strategic level and proceeding towards tactical and operational levels of decision-making. In such a dynamic setting, the practice of simulation goes beyond being a static problem-solving exercise and requires integration with learning. This article discusses the role of learning in simulation design and analysis motivated by the needs of industrial problems and describes how selected tools of statistical learning can be utilized for this purpose

    Solving Multi-Objective Voltage Stability Constrained Power Transfer Capability Problem using Evolutionary Computation

    Get PDF
    Competitive market forces and the ever-growing load demand are two of the key issues that cause power systems to operate closer to their system stability boundaries. Open access has since introduced competition and therefore promotes inter-regional electrical power trades. However, the economic flows of electrical energy between interconnected regions are usually constrained by system physical limits, e.g. transmission lines capacity and generation active/reactive power capability etc. As such, there is a limitation to the capacity of electrical power that regions can export or import. This maximum allowable electrical power transfer is normally referred to as Total Transfer Capability (TTC). It is critical to understand that TTC does not necessarily represent a safe and reliable amount of inter-regional power transfer as one or more operational limits are usually binding when quantifying TTC. Hence, it is of interest that power system stability issues are being considered during power transfer capability assessment in order to provide a more appropriate and secure power transfer level.The aim of this paper is to formulate an Optimal Power Flow (OPF) algorithm, which is capable of evaluating inter-area power transfer capability considering mathematically-complex voltage collapse margins. Through a multi-objective optimization setup, the proposed OPF-based approach can reveal the nonlinear relationships, i.e. the pareto-optimal front, between transfer capability and voltage stability margins. The feasibility of this approach has been intensively tested on a 3-machine 9-bus and the IEEE 118-bus systems

    Design Procedure of a Nonlinear Vibration Absorber Using Bifurcation Analysis

    Full text link
    A nonlinear energy sink (NES) is characterized by its ability to passively realize targeted energy transfer as well as multimodal damping. This latter feature seems to make this device very well suited for reducing the vibration level of MDOF linear structures. The perspective of dealing with MDOF linear primary structures requires the development of an efficient NES design procedure. This paper poses the basis of such a procedure based upon the bifurcation analysis of a system composed of a linear oscillator coupled to a NES, using the software MatCont

    Automating embedded analysis capabilities and managing software complexity in multiphysics simulation part I: template-based generic programming

    Full text link
    An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through template-based generic programming is presented. This approach relies on templating and operator overloading within the C++ language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the Trilinos framework and are demonstrated on a simple problem from chemical engineering
    corecore