822 research outputs found

    A fractional spline collocation-Galerkin method for the time-fractional diffusion equation

    Get PDF
    The aim of this paper is to numerically solve a diffusion differential problem having time derivative of fractional order. To this end we propose a collocation-Galerkin method that uses the fractional splines as approximating functions. The main advantage is in that the derivatives of integer and fractional order of the fractional splines can be expressed in a closed form that involves just the generalized finite difference operator. This allows us to construct an accurate and efficient numerical method. Several numerical tests showing the effectiveness of the proposed method are presented.Comment: 15 page

    A fractional spline collocation method for the fractional order logistic equation

    Get PDF
    We construct a collocation method based on the fractional B-splines to solve a nonlinear differential problem that involves fractional derivative, i.e. the fractional order logistic equation. The use of the fractional B-splines allows us to express the fractional derivative of the approximating function in an analytic form. Thus, the fractional collocation method is easy to implement, accurate and efficient. Several numerical tests illustrate the efficiency of the proposed collocation method.We construct a collocation method based on the fractional B-splines to solve a nonlinear differential problem that involves fractional derivative, i.e. the fractional order logistic equation. The use of the fractional B-splines allows us to express the fractional derivative of the approximating function in an analytic form. Thus, the fractional collocation method is easy to implement, accurate and efficient. Several numerical tests illustrate the efficiency of the proposed collocation method

    A sparse-grid isogeometric solver

    Full text link
    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.Comment: updated version after revie
    • …
    corecore