3,346 research outputs found

    A FEM for an optimal control problem of fractional powers of elliptic operators

    Full text link
    We study solution techniques for a linear-quadratic optimal control problem involving fractional powers of elliptic operators. These fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi-infinite cylinder in one more spatial dimension. Thus, we consider an equivalent formulation with a nonuniformly elliptic operator as state equation. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We discretize the proposed truncated state equation using first degree tensor product finite elements on anisotropic meshes. For the control problem we analyze two approaches: one that is semi-discrete based on the so-called variational approach, where the control is not discretized, and the other one is fully discrete via the discretization of the control by piecewise constant functions. For both approaches, we derive a priori error estimates with respect to the degrees of freedom. Numerical experiments validate the derived error estimates and reveal a competitive performance of anisotropic over quasi-uniform refinement

    A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains

    Get PDF
    We propose and analyze a new discretization technique for a linear-quadratic optimal control problem involving the fractional powers of a symmetric and uniformly elliptic second oder operator; control constraints are considered. Since these fractional operators can be realized as the Dirichlet-to-Neumann map for a nonuniformly elliptic equation, we recast our problem as a nonuniformly elliptic optimal control problem. The rapid decay of the solution to this problem suggests a truncation that is suitable for numerical approximation. We propose a fully discrete scheme that is based on piecewise linear functions on quasi-uniform meshes to approximate the optimal control and first-degree tensor product functions on anisotropic meshes for the optimal state variable. We provide an a priori error analysis that relies on derived Holder and Sobolev regularity estimates for the optimal variables and error estimates for an scheme that approximates fractional diffusion on curved domains; the latter being an extension of previous available results. The analysis is valid in any dimension. We conclude by presenting some numerical experiments that validate the derived error estimates

    Positive approximations of the inverse of fractional powers of SPD M-matrices

    Full text link
    This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the dimension of the computational domain. More recently, an alternative approach aimed at reducing the computational complexity was developed. The linear algebraic system Aαu=f\cal A^\alpha \bf u=\bf f, 0<α<10< \alpha <1 is considered, where A\cal A is a properly normalized (scalded) symmetric and positive definite matrix obtained from finite element or finite difference approximation of second order elliptic problems in Ω⊂Rd\Omega\subset\mathbb{R}^d, d=1,2,3d=1,2,3. The method is based on best uniform rational approximations (BURA) of the function tβ−αt^{\beta-\alpha} for 0<t≤10 < t \le 1 and natural β\beta. The maximum principles are among the major qualitative properties of linear elliptic operators/PDEs. In many studies and applications, it is important that such properties are preserved by the selected numerical solution method. In this paper we present and analyze the properties of positive approximations of A−α\cal A^{-\alpha} obtained by the BURA technique. Sufficient conditions for positiveness are proven, complemented by sharp error estimates. The theoretical results are supported by representative numerical tests
    • …
    corecore