624 research outputs found

    Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions

    Full text link
    In this manuscript we analyze the collective behavior of mean-field limits of large-scale, spatially extended stochastic neuronal networks with delays. Rigorously, the asymptotic regime of such systems is characterized by a very intricate stochastic delayed integro-differential McKean-Vlasov equation that remain impenetrable, leaving the stochastic collective dynamics of such networks poorly understood. In order to study these macroscopic dynamics, we analyze networks of firing-rate neurons, i.e. with linear intrinsic dynamics and sigmoidal interactions. In that case, we prove that the solution of the mean-field equation is Gaussian, hence characterized by its two first moments, and that these two quantities satisfy a set of coupled delayed integro-differential equations. These equations are similar to usual neural field equations, and incorporate noise levels as a parameter, allowing analysis of noise-induced transitions. We identify through bifurcation analysis several qualitative transitions due to noise in the mean-field limit. In particular, stabilization of spatially homogeneous solutions, synchronized oscillations, bumps, chaotic dynamics, wave or bump splitting are exhibited and arise from static or dynamic Turing-Hopf bifurcations. These surprising phenomena allow further exploring the role of noise in the nervous system.Comment: Updated to the latest version published, and clarified the dependence in space of Brownian motion

    Refined Analytical Approximations to Limit Cycles for Non-Linear Multi-Degree-of-Freedom Systems

    Get PDF
    This paper presents analytical higher order approximations to limit cycles of an autonomous multi-degree-of-freedom system based on an integro-differential equation method for obtaining periodic solutions to nonlinear differential equations. The stability of the limit cycles obtained was then investigated using a method for carrying out Floquet analysis based on developments to extensions of the method for solving Hill's Determinant arising in analysing the Mathieu equation, which have previously been reported in the literature. The results of the Floquet analysis, together with the limit cycle predictions, have then been used to provide some estimates of points on the boundary of the domain of attraction of stable equilibrium points arising from a sub-critical Hopf bifurcation. This was achieved by producing a local approximation to the stable manifold of the unstable limit cycle that occurs. The integro-differential equation to be solved for the limit cycles involves no approximations. These only arise through the iterative approach adopted for its solution in which the first approximation is that which would be obtained from the harmonic balance method using only fundamental frequency terms. The higher order approximations are shown to give significantly improved predictions for the limit cycles for the cases considered. The Floquet analysis based approach to predicting the boundary of domains of attraction met with some success for conditions just following a sub-critical Hopf bifurcation. Although this study has focussed on cubic non-linearities, the method presented here could equally be used to refine limit cycle predictions for other non-linearity types.Peer reviewedFinal Accepted Versio

    Periodic solutions to a mean-field model for electrocortical activity

    Full text link
    We consider a continuum model of electrical signals in the human cortex, which takes the form of a system of semilinear, hyperbolic partial differential equations for the inhibitory and excitatory membrane potentials and the synaptic inputs. The coupling of these components is represented by sigmoidal and quadratic nonlinearities. We consider these equations on a square domain with periodic boundary conditions, in the vicinity of the primary transition from a stable equilibrium to time-periodic motion through an equivariant Hopf bifurcation. We compute part of a family of standing wave solutions, emanating from this point.Comment: 9 pages, 5 figure

    Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities

    Get PDF
    In this paper we consider instabilities of localised solutions in planar neural field firing rate models of Wilson-Cowan or Amari type. Importantly we show that angular perturbations can destabilise spatially localised solutions. For a scalar model with Heaviside firing rate function we calculate symmetric one-bump and ring solutions explicitly and use an Evans function approach to predict the point of instability and the shapes of the dominant growing modes. Our predictions are shown to be in excellent agreement with direct numerical simulations. Moreover, beyond the instability our simulations demonstrate the emergence of multi-bump and labyrinthine patterns. With the addition of spike-frequency adaptation, numerical simulations of the resulting vector model show that it is possible for structures without rotational symmetry, and in particular multi-bumps, to undergo an instability to a rotating wave. We use a general argument, valid for smooth firing rate functions, to establish the conditions necessary to generate such a rotational instability. Numerical continuation of the rotating wave is used to quantify the emergent angular velocity as a bifurcation parameter is varied. Wave stability is found via the numerical evaluation of an associated eigenvalue problem

    On the spectra of certain integro-differential-delay problems with applications in neurodynamics

    Get PDF
    We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a= 0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs

    Order Parameter Equations for Front Transitions: Nonuniformly Curved Fronts

    Full text link
    Kinematic equations for the motion of slowly propagating, weakly curved fronts in bistable media are derived. The equations generalize earlier derivations where algebraic relations between the normal front velocity and its curvature are assumed. Such relations do not capture the dynamics near nonequilibrium Ising-Bloch (NIB) bifurcations, where transitions between counterpropagating Bloch fronts may spontaneously occur. The kinematic equations consist of coupled integro-differential equations for the front curvature and the front velocity, the order parameter associated with the NIB bifurcation. They capture the NIB bifurcation, the instabilities of Ising and Bloch fronts to transverse perturbations, the core structure of a spiral wave, and the dynamic process of spiral wave nucleation.Comment: 20 pages. Aric Hagberg: http://cnls.lanl.gov/~aric; Ehud Meron:http://www.bgu.ac.il/BIDR/research/staff/meron.htm

    A normal form for excitable media

    Full text link
    We present a normal form for travelling waves in one-dimensional excitable media in form of a differential delay equation. The normal form is built around the well-known saddle-node bifurcation generically present in excitable media. Finite wavelength effects are captured by a delay. The normal form describes the behaviour of single pulses in a periodic domain and also the richer behaviour of wave trains. The normal form exhibits a symmetry preserving Hopf bifurcation which may coalesce with the saddle-node in a Bogdanov-Takens point, and a symmetry breaking spatially inhomogeneous pitchfork bifurcation. We verify the existence of these bifurcations in numerical simulations. The parameters of the normal form are determined and its predictions are tested against numerical simulations of partial differential equation models of excitable media with good agreement.Comment: 22 pages, accepted for publication in Chao

    Dynamics of neural fields with exponential temporal kernel

    Full text link
    Various experimental methods of recording the activity of brain tissue in vitro and in vivo demonstrate the existence of traveling waves. Neural field theory offers a theoretical framework within which such phenomena can be studied. The question then is to identify the structural assumptions and the parameter regimes for the emergence of traveling waves in neural fields. In this paper, we consider the standard neural field equation with an exponential temporal kernel. We analyze the time-independent (static) and time-dependent (dynamic) bifurcations of the equilibrium solution and the emerging Spatio-temporal wave patterns. We show that an exponential temporal kernel does not allow static bifurcations such as saddle-node, pitchfork, and in particular, static Turing bifurcations, in contrast to the Green's function used by Atay and Hutt (SIAM J. Appl. Math. 65: 644-666, 2004). However, the exponential temporal kernel possesses the important property that it takes into account the finite memory of past activities of neurons, which the Green's function does not. Through a dynamic bifurcation analysis, we give explicit Hopf (temporally non-constant, but spatially constant solutions) and Turing-Hopf (spatially and temporally non-constant solutions, in particular traveling waves) bifurcation conditions on the parameter space which consists of the coefficient of the exponential temporal kernel, the transmission speed of neural signals, the time delay rate of synapses, and the ratio of excitatory to inhibitory synaptic weights.Comment: 25 pages, 8 Figures, 44 Reference
    corecore