2,260 research outputs found

    New quasi-TEM waveguides using artificial surfaces and their application to antennas and circuits

    Full text link
    Research interest: In recent years we have seen the emergence of commercial applications at high frequencies, such as the top part of the microwave band and the millimeter and sub-millimeter bands, and it is expected a big increase in the coming years. This growing demand requires a rapid development of low-cost technology with good performance at these frequencies, where common technologies, such as microstrip and standard waveguides, have some shortcomings. In particular, existing solutions for high-gain planar scanning antennas at these frequencies su er from the disadvantages of these technologies giving rise to high-cost products not suitable for high volume production. Objectives: The main objective of this thesis is to study the feasibility of a new proposal to improve existing solutions to date for low-cost high-gain planar scanning antennas at high frequencies. This overall objective has resulted in another central objective of this thesis, which is the research of new quasi-TEM waveguides that are more appropriate than current technologies for the realization of circuits and components at these frequency bands. These guided solutions make use of periodic or arti cial surfaces in order to con- ne and channel the elds within these waveguides. Methodology: The work follows a logical sequence of speci c tasks aimed at achieving the main objective of this thesis. Chapter 2 presents the proposed guiding solution and shows its performance numerical and experimentally. The optimized design of high-gain antennas based on waveguide slot arrays requires the development of e cient ad-hoc codes. The implementation and validation of this code is presented in Chapter 3, where a new method for the analysis of corrugated surfaces is proposed, and in Chapter 4, which extends this code to the analysis of waveguide slot arrays. The process design and optimization of a two-dimensional array is described in Chapter 5, where a preliminary experimental validation is also described. Moreover, the proposed guiding solution has inspired the development of a new guiding technology of wider bandwidth and more versatile for the realization of circuits and components at high frequencies. Chapter 6 presents the contributions to the study of this technology and its application to the design of circuits.Alfonso Alós, E. (2011). New quasi-TEM waveguides using artificial surfaces and their application to antennas and circuits [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/11073Palanci

    Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    Get PDF
    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above

    Numerical and Experimental Study on Confinement in Y-Shaped Post Wall Branching Waveguide

    Get PDF

    Strong optical coupling between 3D confined resonant modes in microtube cavities

    Get PDF
    Coupled whispering-gallery-mode (WGM) optical microcavities have been extensively explored to tune the resonant eigenfrequencies and spatial distributions of the optical modes, finding many unique photonic applications in a variety of fields, such as nonlinear optics, laser physics, and non-Hermitian photonics. As one type of WGM microcavities, microtube cavities with axial potential wells support 3D confined resonances by circulating light along the microtube cross-section and axis simultaneously, which offers a promising possibility to explore multidimensional and multichannel optical coupling. In this thesis, the optical coupling of 3D confined resonant modes is investigated in coupled microtube cavities fabricated by self-rolling of prestrained nanomembranes. In the first coupling system, multiple sets of 3D optical modes are generated in a single microtube cavity owing to nanogap induced resonant trajectory splitting. The large overlap of optical fields in the split resonant trajectories triggers strong optical coupling of the 3D confined resonant modes. The spectra anticrossing feature and changing-over of one group of coupled fundamental modes are demonstrated as direct evidence of strong coupling. The spatial optical field distribution of 3D coupling modes was experimentally mapped upon the strong coupling regime, which allows direct observation of the energy transfer process between two hybrid states. Numerical calculations based on a quasi-potential model and the mode detuning process are in excellent agreement with the experimental results. On this basis, monolithically integrated twin microtube cavities are proposed to achieve the collective coupling of two sets of 3D optical modes. Owing to the aligned twin geometries, two sets of 3D optical modes in twin microtubes are spectrally and spatially matched, by which both the fundamental and higher-order axial modes are respectively coupled with each other. Multiple groups of the coupling modes provide multiple effective channels for energy exchange between coupled microcavities, which are illustrated by the measured spatial optical field distributions. The spectral anticrossing and changing-over features of each group of coupled modes are revealed in experiments and calculations, indicating the occurrence of strong coupling. In addition, the simulated 3D mode profiles of twin microcavities confirm the collective strong coupling behavior, which is in good agreement with the experimental results. Our work provides a compact and robust scheme for realizing 3D optical coupling, which is of high interest for promising applications such as 3D non-Hermitian systems and multi-channel optical signal processing

    Antennas and Arrays for Mobile Platforms -- Direct Broadcast Satellite and Wireless Communication

    Get PDF
    Flexibility of any proposed communication links is becoming one of the most challenging features. Direct broadcasting satellite services, for example, will be greatly enhanced by providing service-on-the-move. This market is very demanding as it necessitates the development of a low cost, low profile antenna that can be mounted on top of SUVs and minivans, which is capable of continuously tracking the satellite. Another example is the wireless antennas for laptops and smart-phones, where the antennas should fit within an extremely small volume and should be capable of addressing many services over wide frequency range. In this dissertation, both DBS and the wireless antennas are addressed. In these studies, efforts have been concentrated in developing low profile planar antennas, in particular, slot arrays. Travelling wave slotted waveguide arrays have been utilized to minimize the scanning angle range limits due to their inherent beam tilt angle. CNC machines were utilized first to fabricate the early prototypes for sub-array developments. Subsequently, a low cost fabrication technology is adopted to develop a low cost and light weight full array using substrate integrated waveguides (SIWs). The SIW is fully characterized and an excellent equivalent model has been derived to allow easy translation of metallic waveguide components to SIW. Various SIW junctions, transitions, and arrays have been developed for array feed networks including a 64 radiating SIW full array and a 32 radiating SIW array with folded feed. Meanwhile, for the wireless antennas, the utilization of reconfigurable hardware has been introduced to provide the required multi-functionality services and wide frequency coverage. Various reconfigurable antennas were developed and utilized to demonstrate their advantages compared to other design options such as wide-band or multi-band approaches. Both micro-electro-mechanical switches MEMS and PIN diodes have been successfully utilized to switch between the different configurations. The placement, control, and modeling of the switches are also discussed and novel modeling and biasing topologies are introduced. A novel and practical concept of reconfigurable multiband antenna is introduced here too, where advantages of both the multi-band and the reconfigurable antenna structures can be simultaneously achieved while supporting more services

    Design of an Overmoded Ka-Band Sheet-Beam Coupled-Cavity Traveling-Wave Tube Amplifier

    Get PDF
    This thesis develops a qualified design for a sheet-beam coupled-cavity slow-wave structure for use in a high-power millimeter wave traveling wave tube amplifier. The main advance realized in the design is the roughly ten-fold increase in power gained by utilizing a sheet, rather than cylindrical, beam while at the same time employing mode-suppression techniques to suppress competing modes that are introduced by the sheet geometry. This design addresses considerations relevant to high-power tubes in general, as well as points specific to the design of a sheet-beam structure. The coupled-cavity structure is designed with the following general characteristics: center frequency of 35 GHz with greater than a 10% bandwidth, and capabilities of 5 kW pulsed output power. The device operating parameters are as follows: a moderate gain of 18 dB, and an experimentally demonstrated sheet electron beam with 3.5 A, 19.5 kV, and 0.3 mm x 4.0 mm beam cross-section. The final design goal has been to limit the interaction length as much as possible to reduce magnet weight and complications. A final design structure is proposed, which produces in excess of 5 kW peak power in simulation with safeguards from instabilities. The structure geometry is based on a novel design for a sheet-beam coupled-cavity slow-wave structure that has been characterized through various analyses, simulations, and experiments. This thesis outlines and details the various techniques used to probe the structure and thus form a full characterization of the structure and proposed amplifier device. The concept espoused by much of this work is to adapt the analyses from cylindrical beam devices for the sheet-beam geometry. Then we make comparisons between the new sheet-beam structure and conventional devices. From these comparisons we draw conclusions on the operation of sheet-beam amplifiers and make design choices accordingly. The final design is validated with fully three-dimensional particle simulations and predicts stable amplification across the range of operation

    Latest Advancements in Micro Nano Molding Technologies – Process Developments and Optimization, Materials, Applications, Key Enabling Technologies

    Get PDF
    Micro- and nano-molding technologies are continuously being developed due to enduring trends like increasing miniaturization and higher functional integration of products, devices, and systems. Furthermore, with the introduction of higher performance polymers, feedstocks, and composites, new opportunities in terms of material properties can be exploited, and, consequently, more micro-products and micro/nano-structured surfaces are currently being designed and manufactured.Innovations in micro- and nano-molding techniques are seen in the different processes employed in production (injection molding, micro injection molding, etc.); on the use of new and functional materials; for an ever-increasing number of applications (health-care devices, micro-implants, mobility, and communications products, optical elements, micro-electromechanical systems, sensors, etc.); in several key enabling technologies that support the successful realization of micro and nano molding processes (micro- and nano-tooling technologies, process monitoring techniques, micro- and nanometrology methods for quality control, simulation, etc.) and their integration into new manufacturing process chains.This Special Issue reprint showcases research papers and review articles that focus on the latest developments in micro-manufacturing and key enabling technologies for the production of both micro-products and micro-structured surfaces

    Ku-band multiple beam antenna

    Get PDF
    The frequency reuse capability is demonstrated for a Ku-band multiple beam antenna which provides contiguous low sidelobe spot beams for point-to-point communications between any two points within the continental United States (CONUS), or regional coverage beams for direct broadcast systems. A spot beam antenna in the 14/21 GHz band which provides contiguous overlapping beams covering CONUS and two discrete beams covering Hawaii and Alaska were designed, developed, and tested. Two reflector antennas are required for providing contiguous coverage of CONUS. Each is comprised of one offset parabolic reflector, one flat polarization diplexer, and two separate planar array feeds. This antenna system provides contiguous spot beam coverage of CONUS, utilizing 15 beams. Also designed, developed and demonstrated was a shaped contoured beam antenna system which provides contiguous four time zone coverage of CONUS from a single offset parabolic reflector incorporating one flat polarization diplexer and two separate planar array feeds. The beams which illuminate the eastern time zone and the mountain time zone are horizontally polarized, while the beams which illuminate the central time zone and the pacific time zone are vertically polarized. Frequency reuse is achieved by amplitude and polarization isolation
    • …
    corecore