46 research outputs found

    Functional a posteriori error estimates for parabolic time-periodic boundary value problems

    Full text link
    The paper is concerned with parabolic time-periodic boundary value problems which are of theoretical interest and arise in different practical applications. The multiharmonic finite element method is well adapted to this class of parabolic problems. We study properties of multiharmonic approximations and derive guaranteed and fully computable bounds of approximation errors. For this purpose, we use the functional a posteriori error estimation techniques earlier introduced by S. Repin. Numerical tests confirm the efficiency of the a posteriori error bounds derived

    Functional a posteriori error estimates for time-periodic parabolic optimal control problems

    Full text link
    This paper is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds

    An efficient steady-state analysis of the eddy current problem using a parallel-in-time algorithm

    Full text link
    This paper introduces a parallel-in-time algorithm for efficient steady-state solution of the eddy current problem. Its main idea is based on the application of the well-known multi-harmonic (or harmonic balance) approach as the coarse solver within the periodic parallel-in-time framework. A frequency domain representation allows for the separate calculation of each harmonic component in parallel and therefore accelerates the solution of the time-periodic system. The presented approach is verified for a nonlinear coaxial cable model

    Space-Time Isogeometric Analysis of Parabolic Evolution Equations

    Full text link
    We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces

    Frequency-domain sensitivity analysis of stability of nonlinear vibrations for high-fidelity models of jointed structures

    Get PDF
    For the analysis of essentially nonlinear vibrations it is very important not only to determine whether the considered vibration regime is stable or unstable but also which design parameters need to be changed to make the desired stability regime and how sensitive is the stability of a chosen design of a gas-turbine structure to variation of the design parameters. In the proposed paper, an efficient method is proposed for a first time for sensitivity analysis of stability for nonlinear periodic forced response vibrations using large-scale models structures with friction, gaps and other types of nonlinear contact interfaces. The method allows using large-scale finite element models for structural components together with detailed description of nonlinear interactions at contact interfaces. The highly accurate reduced models are applied in the assessment of the sensitivity of stability of periodic regimes. The stability sensitivity analysis is performed in frequency domain with the multiharmonic representation of the nonlinear forced response amplitudes. Efficiency of the developed approach is demonstrated on a set of test cases including simple models and large-scale realistic blade model with different types of nonlinearities, including: friction, gaps, and cubic elastic nonlinearity

    Waveform Relaxation for the Computational Homogenization of Multiscale Magnetoquasistatic Problems

    Full text link
    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton--Raphson scheme. The resolution of many mesoscale problems per Gauss point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauss point.Comment: submitted to JC

    Multiscale Finite Element Modeling of Nonlinear Magnetoquasistatic Problems Using Magnetic Induction Conforming Formulations

    Full text link
    In this paper we develop magnetic induction conforming multiscale formulations for magnetoquasistatic problems involving periodic materials. The formulations are derived using the periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the entire domain and many mesoscale problems defined on finely-meshed small areas around some points of interest of the macroscale mesh (e.g. numerical quadrature points). The exchange of information between these macro and meso problems is thoroughly explained in this paper. For the sake of validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.Comment: Paper accepted for publication in the SIAM MMS journa

    A New Parareal Algorithm for Problems with Discontinuous Sources

    Full text link
    The Parareal algorithm allows to solve evolution problems exploiting parallelization in time. Its convergence and stability have been proved under the assumption of regular (smooth) inputs. We present and analyze here a new Parareal algorithm for ordinary differential equations which involve discontinuous right-hand sides. Such situations occur in various applications, e.g., when an electric device is supplied with a pulse-width-modulated signal. Our new Parareal algorithm uses a smooth input for the coarse problem with reduced dynamics. We derive error estimates that show how the input reduction influences the overall convergence rate of the algorithm. We support our theoretical results by numerical experiments, and also test our new Parareal algorithm in an eddy current simulation of an induction machine
    corecore