2,810 research outputs found

    Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    Full text link
    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a non-perturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and P\'eclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade, but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur by two mechanisms: an anomalous input of negative entropy (negentropy) by pressure-work and a cascade of negentropy to small scales. We derive "4/5th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power-Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade, or an inverse cascade of usual thermodynamic entropy

    Computational methods for internal flows with emphasis on turbomachinery

    Get PDF
    Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed

    Vector potential methods

    Get PDF
    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed
    corecore