16,394 research outputs found

    Computing Algebraic Matroids

    Full text link
    An affine variety induces the structure of an algebraic matroid on the set of coordinates of the ambient space. The matroid has two natural decorations: a circuit polynomial attached to each circuit, and the degree of the projection map to each base, called the base degree. Decorated algebraic matroids can be computed via symbolic computation using Groebner bases, or through linear algebra in the space of differentials (with decorations calculated using numerical algebraic geometry). Both algorithms are developed here. Failure of the second algorithm occurs on a subvariety called the non-matroidal or NM- locus. Decorated algebraic matroids have widespread relevance anywhere that coordinates have combinatorial significance. Examples are computed from applied algebra, in algebraic statistics and chemical reaction network theory, as well as more theoretical examples from algebraic geometry and matroid theory.Comment: 15 pages; added link to references, note on page 1, and small formatting fixe

    Galois groups of Schubert problems via homotopy computation

    Full text link
    Numerical homotopy continuation of solutions to polynomial equations is the foundation for numerical algebraic geometry, whose development has been driven by applications of mathematics. We use numerical homotopy continuation to investigate the problem in pure mathematics of determining Galois groups in the Schubert calculus. For example, we show by direct computation that the Galois group of the Schubert problem of 3-planes in C^8 meeting 15 fixed 5-planes non-trivially is the full symmetric group S_6006.Comment: 17 pages, 4 figures. 3 references adde
    • …
    corecore