1,124 research outputs found

    Numerical variational methods applied to cylinder buckling

    Full text link
    We review and compare different computational variational methods applied to a system of fourth order equations that arises as a model of cylinder buckling. We describe both the discretization and implementation, in particular how to deal with a 1 dimensional null space. We show that we can construct many different solutions from a complex energy surface. We examine numerically convergence in the spatial discretization and in the domain size. Finally we give a physical interpretation of some of the solutions found.Comment: 23 pages, 12 figures, 6 table

    Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation

    Get PDF
    In this paper, a three-field finite element stabilized formulation for the incompressible viscoelastic fluid flow problem is tested numerically. Starting from a residual based formulation, a non-residual based one is designed, the benefits of which are highlighted in this work. Both formulations allow one to deal with the convective nature of the problem and to use equal interpolation for the problem unknowns View the MathML sources-u-p (deviatoric stress, velocity and pressure). Additionally, some results from the numerical analysis of the formulation are stated. Numerical examples are presented to show the robustness of the method, which include the classical 4: 1 planar contraction problem and the flow over a confined cylinder case, as well as a two-fluid formulation for the planar jet buckling problem.Peer ReviewedPostprint (author's final draft

    Reliability-based design optimization of shells with uncertain geometry using adaptive Kriging metamodels

    Full text link
    Optimal design under uncertainty has gained much attention in the past ten years due to the ever increasing need for manufacturers to build robust systems at the lowest cost. Reliability-based design optimization (RBDO) allows the analyst to minimize some cost function while ensuring some minimal performances cast as admissible failure probabilities for a set of performance functions. In order to address real-world engineering problems in which the performance is assessed through computational models (e.g., finite element models in structural mechanics) metamodeling techniques have been developed in the past decade. This paper introduces adaptive Kriging surrogate models to solve the RBDO problem. The latter is cast in an augmented space that "sums up" the range of the design space and the aleatory uncertainty in the design parameters and the environmental conditions. The surrogate model is used (i) for evaluating robust estimates of the failure probabilities (and for enhancing the computational experimental design by adaptive sampling) in order to achieve the requested accuracy and (ii) for applying a gradient-based optimization algorithm to get optimal values of the design parameters. The approach is applied to the optimal design of ring-stiffened cylindrical shells used in submarine engineering under uncertain geometric imperfections. For this application the performance of the structure is related to buckling which is addressed here by means of a finite element solution based on the asymptotic numerical method

    Buckling of imperfect cylinders under axial compression

    Get PDF
    Donnell equations, Newton method, and numerical solution applied to buckling of imperfect cylinders under axial compressio

    On 3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report
    • …
    corecore