185 research outputs found

    Performance analysis of time-dependent queueing systems: survey and classification

    Full text link
    Many queueing systems are subject to time-dependent changes in system parameters, such as the arrival rate or number of servers. Examples include time-dependent call volumes and agents at inbound call centers, time-varying air traffic at airports, time-dependent truck arrival rates at seaports, and cyclic message volumes in computer systems.There are several approaches for the performance analysis of queueing systems with deterministic parameter changes over time. In this survey, we develop a classification scheme that groups these approaches according to their underlying key ideas into (i) numerical and analytical solutions,(ii)approaches based on models with piecewise constant parameters, and (iii) approaches based on mod-ified system characteristics. Additionally, we identify links between the different approaches and provide a survey of applications that are categorized into service, road and air traffic, and IT systems

    Large deviations analysis for the M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt regime

    Full text link
    We consider the FCFS M/H2/n+MM/H_2/n + M queue in the Halfin-Whitt heavy traffic regime. It is known that the normalized sequence of steady-state queue length distributions is tight and converges weakly to a limiting random variable W. However, those works only describe W implicitly as the invariant measure of a complicated diffusion. Although it was proven by Gamarnik and Stolyar that the tail of W is sub-Gaussian, the actual value of limxx2log(P(W>x))\lim_{x \rightarrow \infty}x^{-2}\log(P(W >x)) was left open. In subsequent work, Dai and He conjectured an explicit form for this exponent, which was insensitive to the higher moments of the service distribution. We explicitly compute the true large deviations exponent for W when the abandonment rate is less than the minimum service rate, the first such result for non-Markovian queues with abandonments. Interestingly, our results resolve the conjecture of Dai and He in the negative. Our main approach is to extend the stochastic comparison framework of Gamarnik and Goldberg to the setting of abandonments, requiring several novel and non-trivial contributions. Our approach sheds light on several novel ways to think about multi-server queues with abandonments in the Halfin-Whitt regime, which should hold in considerable generality and provide new tools for analyzing these systems

    Analysis of buffer allocations in time-dependent and stochastic flow lines

    Full text link
    This thesis reviews and classifies the literature on the Buffer Allocation Problem under steady-state conditions and on performance evaluation approaches for queueing systems with time-dependent parameters. Subsequently, new performance evaluation approaches are developed. Finally, a local search algorithm for the derivation of time-dependent buffer allocations is proposed. The algorithm is based on numerically observed monotonicity properties of the system performance in the time-dependent buffer allocations. Numerical examples illustrate that time-dependent buffer allocations represent an adequate way of minimizing the average WIP in the flow line while achieving a desired service level

    A computational approach to steady-state convergence of fluid limits for Coxian queuing networks with abandonment

    Get PDF
    Many-server queuing networks with general service and abandonment times have proven to be a realistic model for scenarios such as call centers and health-care systems. The presence of abandonment makes analytical treatment difficult for general topologies. Hence, such networks are usually studied by means of fluid limits. The current state of the art, however, suffers from two drawbacks. First, convergence to a fluid limit has been established only for the transient, but not for the steady state regime. Second, in the case of general distributed service and abandonment times, convergence to a fluid limit has been either established only for a single queue, or has been given by means of a system of coupled integral equations which does not allow for a numerical solution. By making the mild assumption of Coxian-distributed service and abandonment times, in this paper we address both drawbacks by establishing convergence in probability to a system of coupled ordinary differential equations (ODEs) using the theory of Kurtz. The presence of abandonments leads in many cases to ODE systems with a global attractor, which is known to be a sufficient condition for the fluid and the stochastic steady state to coincide in the limiting regime. The fact that our ODE systems are piecewise affine enables a computational method for establishing the presence of a global attractor, based on a solution of a system of linear matrix inequalities

    Stochastic Systems ACHIEVING RAPID RECOVERY IN AN OVERLOAD CONTROL FOR LARGE-SCALE SERVICE SYSTEMS

    Get PDF
    We consider an automatic overload control for two large service systems modeled as multi-server queues, such as call centers. We assume that the two systems are designed to operate independently, but want to help each other respond to unexpected overloads. The proposed overload control automatically activates sharing (sending some customers from one system to the other) once a ratio of the queue lengths in the two systems crosses an activation threshold (with ratio and activation threshold parameters for each direction). To prevent harmful sharing, sharing is allowed in only one direction at any time. In this paper, we are primarily concerned with ensuring that the system recovers rapidly after the overload is over, either (i) because the two systems return to normal loading or (ii) because the direction of the overload suddenly shifts in the opposite direction. To achieve rapid recovery, we introduce lower thresholds for the queue ratios, below which one-way sharing is released. As a basis for studyin

    New stochastic processes to model interest rates : LIBOR additive processes

    Get PDF
    In this paper, a new kind of additive process is proposed. Our main goal is to define, characterize and prove the existence of the LIBOR additive process as a new stochastic process. This process will be de.ned as a piecewise stationary process with independent increments, continuous in probability but with discontinuous trajectories, and having "càdlàg" sample paths. The proposed process is specifically designed to derive interest-rates modelling because it allows us to introduce a jump-term structure as an increasing sequence of Lévy measures. In this paper we characterize this process as a Markovian process with an infinitely divisible, selfsimilar, stable and self-decomposable distribution. Also, we prove that the Lévy-Khintchine characteristic function and Lévy-Itô decomposition apply to this process. Additionally we develop a basic framework for density transformations. Finally, we show some examples of LIBOR additive processes

    Sequential Tracking of a Hidden Markov Chain Using Point Process Observations

    Get PDF
    We study finite horizon optimal switching problems for hidden Markov chain models under partially observable Poisson processes. The controller possesses a finite range of strategies and attempts to track the state of the unobserved state variable using Bayesian updates over the discrete observations. Such a model has applications in economic policy making, staffing under variable demand levels and generalized Poisson disorder problems. We show regularity of the value function and explicitly characterize an optimal strategy. We also provide an efficient numerical scheme and illustrate our results with several computational examples.Comment: Key words and phrases. Markov Modulated Poisson processes, optimal switchin
    corecore