224 research outputs found

    Aeronautical engineering: A continuing bibliography with indexes (supplement 305)

    Get PDF
    This bibliography lists 239 reports, articles, and other documents recently introduced into the NASA scientific and technical information system. Subject coverage includes the following: the design, construction, and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Error estimation in geophysical fluid dynamics through learning

    No full text

    Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    Get PDF
    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Scaling finite difference methods in large eddy simulation of jet engine noise to the petascale: numerical methods and their efficient and automated implementation

    Get PDF
    Reduction of jet engine noise has recently become a new arena of competition between aircraft manufacturers. As a relatively new field of research in computational fluid dynamics (CFD), computational aeroacoustics (CAA) prediction of jet engine noise based on large eddy simulation (LES) is a robust and accurate tool that complements the existing theoretical and experimental approaches. In order to satisfy the stringent requirements of CAA on numerical accuracy, finite difference methods in LES-based jet engine noise prediction rely on the implicitly formulated compact spatial partial differentiation and spatial filtering schemes, a crucial component of which is an embedded solver for tridiagonal linear systems spatially oriented along the three coordinate directions of the computational space. Traditionally, researchers and engineers in CAA have employed manually crafted implementations of solvers including the transposition method, the multiblock method and the Schur complement method. Algorithmically, these solvers force a trade-off between numerical accuracy and parallel scalability. Programmingwise, implementing them for each of the three coordinate directions is tediously repetitive and error-prone. ^ In this study, we attempt to tackle both of these two challenges faced by researchers and engineers. We first describe an accurate and scalable tridiagonal linear system solver as a specialization of the truncated SPIKE algorithm and strategies for efficient implementation of the compact spatial partial differentiation and spatial filtering schemes. We then elaborate on two programming models tailored for composing regular grid-based numerical applications including finite difference-based LES of jet engine noise, one based on generalized elemental subroutines and the other based on functional array programming, and the accompanying code optimization and generation methodologies. Through empirical experiments, we demonstrate that truncated SPIKE-based spatial partial differentiation and spatial filtering deliver the theoretically promised optimal scalability in weak scaling conditions and can be implemented using the two programming models with performance on par with handwritten code while significantly reducing the required programming effort

    Aeronautical engineering: A continuing bibliography with indexes (supplement 195)

    Get PDF
    This bibliography lists 389 reports, articles and other documents introduced into the NASA scientific and technical information system in December 1985

    Research and technology annual report, 1982

    Get PDF
    Various research and technology activities are described. Highlights of these accomplishments indicate varied and highly productive reseach efforts

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    Supercomputing in Aerospace

    Get PDF
    Topics addressed include: numerical aerodynamic simulation; computational mechanics; supercomputers; aerospace propulsion systems; computational modeling in ballistics; turbulence modeling; computational chemistry; computational fluid dynamics; and computational astrophysics

    On the calculation of dynamic derivatives using computational fluid dynamics

    No full text
    In this thesis, the exploitation of computational fluid dynamics (CFD) methods for the flight dynamics of manoeuvring aircraft is investigated. It is demonstrated that CFD can now be used in a reasonably routine fashion to generate stability and control databases. Different strategies to create CFD-derived simulation models across the flight envelope are explored, ranging from combined low-fidelity/high-fidelity methods to reduced-order modelling. For the representation of the unsteady aerodynamic loads, a model based on aerodynamic derivatives is considered. Static contributions are obtained from steady-state CFD calculations in a routine manner. To more fully account for the aircraft motion, dynamic derivatives are used to update the steady-state predictions with additional contributions. These terms are extracted from small-amplitude oscillatory tests. The numerical simulation of the flow around a moving airframe for the prediction of dynamic derivatives is a computationally expensive task. Results presented are in good agreement with available experimental data for complex geometries. A generic fighter configuration and a transonic cruiser wind tunnel model are the test cases. In the presence of aerodynamic non-linearities, dynamic derivatives exhibit significant dependency on flow and motion parameters, which cannot be reconciled with the model formulation. An approach to evaluate the sensitivity of the non-linear flight simulation model to variations in dynamic derivatives is described. The use of reduced models, based on the manipulation of the full-order model to reduce the cost of calculations, is discussed for the fast prediction of dynamic derivatives. A linearized solution of the unsteady problem, with an attendant loss of generality, is inadequate for studies of flight dynamics because the aircraft may experience large excursions from the reference point. The harmonic balance technique, which approximates the flow solution in a Fourier series sense, retains a more general validity. The model truncation, resolving only a small subset of frequencies typically restricted to include one Fourier mode at the frequency at which dynamic derivatives are desired, provides accurate predictions over a range of two- and three-dimensional test cases. While retaining the high fidelity of the full-order model, the cost of calculations is a fraction of the cost for solving the original unsteady problem. An important consideration is the limitation of the conventional model based on aerodynamic derivatives when applied to conditions of practical interest (transonic speeds and high angles of attack). There is a definite need for models with more realism to be used in flight dynamics. To address this demand, various reduced models based on system-identification methods are investigated for a model case. A non-linear model based on aerodynamic derivatives, a multi-input discrete-time Volterra model, a surrogate-based recurrence-framework model, linear indicial functions and radial basis functions trained with neural networks are evaluated. For the flow conditions considered, predictions based on the conventional model are the least accurate. While requiring similar computational resources, improved predictions are achieved using the alternative models investigated. Furthermore, an approach for the automatic generation of aerodynamic tables using CFD is described. To efficiently reduce the number of high-fidelity (physics-based) analyses required, a kriging-based surrogate model is used. The framework is applied to a variety of test cases, and it is illustrated that the approach proposed can handle changes in aircraft geometry. The aerodynamic tables can also be used in real-time to fly the aircraft through the database. This is representative of the role played by CFD simulations and the potential impact that high-fidelity analyses might have to reduce overall costs and design cycle tim
    • …
    corecore