375 research outputs found

    Dynamics and ‘normal stress’ evaluation of dilute suspensions of periodically forced prolate spheroids in a quiescent Newtonian fluid at low Reynolds numbers

    Get PDF
    The problem of determining the force acting on a particle in a fluid where the motion of the fluid and the particle is given has been considered in some detail in the literature. In this work, we propose an example of a new class of problems where, the fluid is quiescent and the effect of an external periodic force on the motion of the particle is determined at low non-zero Reynolds numbers. We present an analysis of the dynamics of dilute suspensions of periodically forced prolate spheroids in a quiescent Newtonian fluid at low Reynolds numbers including the effects of both convective and unsteady inertia. The inclusion of both forms of inertia leads to a nonlinear integro — differential equation which is solved numerically for the velocity and displacement of the individual particle. We show that a ‘normal stress’ like parameter can be evaluated using standard techniques of Batchelor. Hence this system allows for an experimentally accessible measurable macroscopic parameter, analogous to the ‘normal stress’, which can be related to the dynamics of individual particles. We note that this ‘normal stress’ arises from the internal fluctuations induced by the periodic force. In addition, a preliminary analysis leading to a possible application of separating particles by shape is presented. We feel that our results show possibilities of being technologically important since the ‘normal stress’ depends strongly on the controllable parameters and our results may lead to insights in the development of active dampeners and smart fluids. Since we see complex behaviour even in this simple system, it is expected that the macroscopic behaviour of such suspensions may be much more complex in more complex flows

    An immersed boundary method for particles and bubbles in magnetohydrodynamic flows

    Get PDF
    This thesis presents a numerical method for the phase-resolving simulation of rigid particles and deformable bubbles in viscous, magnetohydrodynamic flows. The presented approach features solid robustness and high numerical efficiency. The implementation is three-dimensional and fully parallel suiting the needs of modern high-performance computing. In addition to the steps towards magnetohydrodynamics, the thesis covers method development with respect to the immersed boundary method which can be summarized in simple words by From rigid spherical particles to deformable bubbles. The development comprises the extension of an existing immersed boundary method to non-spherical particles and very low particle-to-fluid density ratios. A detailed study is dedicated to the complex interaction of particle shape, wake and particle dynamics. Furthermore, the representation of deformable bubble shapes, i.e. the coupling of the bubble shape to the fluid loads, is accounted for. The topic of bubble interaction is surveyed including bubble collision and coalescence and a new coalescence model is introduced. The thesis contains applications of the method to simulations of the rise of a single bubble and a bubble chain in liquid metal with and without magnetic field highlighting the major effects of the field on the bubble dynamics and the flow field. The effect of bubble coalescence is quantified for two closely adjacent bubble chains. A framework for large-scale simulations with many bubbles is provided to study complex multiphase phenomena like bubble-turbulence interaction in an efficient manner

    Stokesian Dynamics

    Get PDF
    Particles suspended or dispersed in a fluid medium occur in a wide variety of natural and man-made settings, e.g. slurries, composite materials, ceramics, colloids, polymers, proteins, etc. The central theoretical and practical problem is to understand and predict the macroscopic equilibrium and transport properties of these multiphase materials from their microstructural mechanics. The macroscopic properties might be the sedimentation or aggregation rate, self-diffusion coefficient, thermal conductivity, or rheology of a suspension of particles. The microstructural mechanics entails the Brownian, interparticle, external, and hydrodynamic forces acting on the particles, as well as their spatial and temporal distribution, which is commonly referred to as the microstructure. If the distribution of particles were given, as well as the location and motion of any boundaries and the physical properties of the particles and suspending fluid, one would simply have to solve (in principle, not necessarily in practice) a well-posed boundary-value problem to determine the behavior of the material. Averaging this solution over a large volume or over many different configurations, the macroscopic or averaged properties could be determined. The two key steps in this approach, the solution of the many-body problem and the determination of the microstructure, are formidable but essential tasks for understanding suspension behavior. This article discusses a new, molecular-dynamics-like approach, which we have named Stokesian dynamics, for dynamically simulating the behavior of many particles suspended or dispersed in a fluid medium. Particles in suspension may interact through both hydrodynamic and nonhydrodynamic forces, where the latter may be any type of Brownian, colloidal, interparticle, or external force. The simulation method is capable of predicting both static (i.e. configuration-specific) and dynamic microstructural properties, as well as macroscopic properties in either dilute or concentrated systems. Applications of Stokesian dynamics are widespread; problems of sedimentation, flocculation, diffusion, polymer rheology, and transport in porous media all fall within its domain. Stokesian dynamics is designed to provide the same theoretical and computational basis for multiphase, dispersed systems as does molecular dynamics for statistical theories of matter. This review focuses on the simulation method, not on the areas in which Stokesian dynamics can be used. For a discussion of some of these many different areas, the reader is referred to the excellent reviews and proceedings of topical conferences that have appeared (e.g. Batchelor 1976a, Dickinson 1983, Faraday Discussions 1983, 1987, Family & Landau 1984). Before embarking on a description of Stokesian dynamics, we pause here to discuss some of the relevant theoretical literature on suspensions, and dynamic simulation in general, in order to put Stokesian dynamics in perspective

    Rising and settling 2D cylinders with centre-of-mass offset

    Full text link
    Rotational effects are commonly neglected when considering the dynamics of freely rising or settling isotropic particles. Here, we demonstrate that particle rotations play an important role for rising as well as for settling cylinders in situations when mass eccentricity, and thereby a new pendulum timescale, is introduced to the system. We employ two-dimensional simulations to study the motion of a single cylinder in a quiescent unbounded incompressible Newtonian fluid. This allows us to vary the Galileo number, density ratio, relative moment of inertia, and Centre-Of-Mass offset (COM) systematically and beyond what is feasible experimentally. For certain buoyant density ratios, the particle dynamics exhibit a resonance mode, during which the coupling via the Magnus lift force causes a positive feedback between translational and rotational motions. This mode results in vastly different trajectories with significantly larger rotational and translational amplitudes and an increase of the drag coefficient easily exceeding a factor two. We propose a simple model that captures how the occurrence of the COM offset induced resonance regime varies, depending on the other input parameters, specifically the density ratio, the Galileo number, and the relative moment of inertia. Remarkably, depending on the input parameters, resonance can be observed for centre-of-mass offsets as small as a few percent of the particle diameter, showing that the particle dynamics can be highly sensitive to this parameter.Comment: 32 pages, 13 figure

    Thermal Flows

    Get PDF
    Flows of thermal origin and heat transfer problems are central in a variety of disciplines and industrial applications. The present book entitled Thermal Flows consists of a collection of studies by distinct investigators and research groups dealing with different types of flows relevant to both natural and technological contexts. Both reviews of the state-of-the-art and new theoretical, numerical and experimental investigations are presented, which illustrate the structure of these flows, their stability behavior, and the possible bifurcations to different patterns of symmetry and/or spatiotemporal regimes. Moreover, different categories of fluids are considered (liquid metals, gases, common fluids such as water and silicone oils, organic and inorganic transparent liquids, and nanofluids). This information is presented under the hope that it will serve as a new important resource for physicists, engineers and advanced students interested in the physics of non-isothermal fluid systems; fluid mechanics; environmental phenomena; meteorology; geophysics; and thermal, mechanical and materials engineering

    Realizing the physics of motile cilia synchronization with driven colloids

    Full text link
    Cilia and flagella in biological systems often show large scale cooperative behaviors such as the synchronization of their beats in "metachronal waves". These are beautiful examples of emergent dynamics in biology, and are essential for life, allowing diverse processes from the motility of eukaryotic microorganisms, to nutrient transport and clearance of pathogens from mammalian airways. How these collective states arise is not fully understood, but it is clear that individual cilia interact mechanically,and that a strong and long ranged component of the coupling is mediated by the viscous fluid. We review here the work by ourselves and others aimed at understanding the behavior of hydrodynamically coupled systems, and particularly a set of results that have been obtained both experimentally and theoretically by studying actively driven colloidal systems. In these controlled scenarios, it is possible to selectively test aspects of the living motile cilia, such as the geometrical arrangement, the effects of the driving profile and the distance to no-slip boundaries. We outline and give examples of how it is possible to link model systems to observations on living systems, which can be made on microorganisms, on cell cultures or on tissue sections. This area of research has clear clinical application in the long term, as severe pathologies are associated with compromised cilia function in humans.Comment: 31 pages, to appear in Annual Review of Condensed Matter Physic

    Modelling and simulation of carbon-in-leach circuits

    Get PDF
    A CIL circuit is a process of continuous leaching of gold from ore to liquid using a counter-current adsorption of gold from liquid to carbon particles in a series of tanks. It concentrates gold from 2.5-3.5 g/t in ore to 10000 to 15000 g/t on carbon, thus playing an important role on the economics of a gold refinery.In this study, a dynamic model of CIL circuits has been developed to study the transient nature of the system. The effect of various operating parameters on the performance of the system has also been assessed. For example, the particle size and cyanide concentration were predicted to play a critical role on the gold leaching. A decrease in the particle size increased the efficiency of the process, whereas an opposite effect was observed on increasing the cyanide concentration. The recovery also increased on increasing the carbon transfer interval. On the other hand, oxygen concentration did not show a significant effect on the efficiency.The hydrodynamics of CIL tanks is also a complex phenomenon, and it affects both leaching and adsorption kinetics. Current models account for the effect of hydrodynamics in lumped manner. One needs to incorporate the hydrodynamic parameters explicitly in order to make the model applicable over a wider range of operating conditions. Therefore, rigorous CFD simulations of CIL tanks have also been carried out in this study. However, current multiphase CFD simulations require validation especially for interphase closures (such as drag). Therefore, simulations have been conducted using a number of drag models. The modified Brucato drag model was found to be the most appropriate for the CIL tanks, and hence was used in conducting the majority of the simulations in this study. Subsequently, the simulations were conducted to study the effect of various parameters, such as solid loading, and impeller speed and type, on the hydrodynamics of CIL tanks.At low solid loadings, the effect of it on the liquid hydrodynamics was minimal, however, at high solid concentrations, substantial impact on the hydrodynamics was predicted. For example, ‘false bottom effect’ was predicted at very high solid concentration indicates the presence of dead zones. Similarly, at higher solid loadings, higher slip velocities were observed below the impeller, near the wall and near the impeller rod. Finally, the higher solid loadings also caused the dampening of turbulence due to the presence of particles, thus resulting in significant power consumption to counteract this dampening.Other than ore particles, CIL tanks also contain the larger carbon particles. The flow of carbon particles is affected by the flow of ore-liquid slurry. No model is currently available for calculating the drag force on the carbon particles. For obtaining the drag force, a novel macroscopic particle model (MPM) based on RDPM approach was used after validation. The predictions from the MPM model were compared with the available experimental data, and a new drag model has been proposed for the carbon particles in the CIL slurry.The research develops a phenomenological model, validates the drag model for ore particles and proposes a drag model for carbon particles. These models along with the methodology presented in the thesis can be applied on the industrial scale CIL tanks for any ore type provided the rate terms and kinetic constants are known
    • …
    corecore